• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.029 seconds

Evaluation of Bending Characteristics for Carbon FRP Structure having Circle Cross-section (원통 CFRP 구조재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.202-206
    • /
    • 2011
  • Works on the strength and stiffness in the structural members are carried out widely with various material and cross-sections with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. So, Light weight of member structures is necessary for the high performance and various functions. In this study, the CFRP flat and circular member was manufactured by CFRP prepreg sheet in autoclave. Carbon FRP is an anisotropy material whose mechanical properties change with its fiber orientation angle, so this study apply to the effects of the fiber orientation angle on the bending characteristics of the member. Each CFRP flat and circle are compared by strength and stiffness.

Structural Design of a Large Silla Bell Considering Vibration and Sound (진동과 음향을 고려한 신라대종의 구조설계)

  • Kim, Seock Hyun;Lee, Joong Hyeok;Byeon, Jun Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.604-607
    • /
    • 2014
  • The Seongdeok Divine Bell(nicknamed "Emile Bell") represents the bell of the Silla dynasty. However, ringing it was stopped since 2003 for the safety of the bell. Currently, Kyungju city is performing a project casting a new great bell(tentatively named "Great Bell of Silla") that inherits the beautiful appearance and the sound of the Seongdeok Divine Bell in order to ring a new coming millenium. The new bell is designed to be almost same as the Seongdeok Divine Bell in terms of size, weight and shape as well as its sound. In this study, we investigate the problems occurring in the design of the bell structure and propose the design strategy for the reconstruction of the traditional large bells.

  • PDF

Development of Hybrid Type Automotive Drivers Seat (운전석용 하이브리드형 경량 좌석의 개발)

  • 김정인;최금호;이병휘;이우일;김희성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.172-182
    • /
    • 2000
  • A hybrid type automotive drivers seat was invented with new concepts for the reduction of weight and manufacturing costs. Fundamental studies were performed to determine the basic geometry of reinforcing support. A prototypical design was provided by the manufacturer considering compatibility with other parts. Several structural analyses simulating various crash situations were performed and modifications were continued until a final design was reached. A sample product was manufactured and sled crash tests were performed to verify the safety of the seat. Comparisons of test results with the previous model and a seat from another company proved safety performances to be superior.

  • PDF

Monotonic and cyclic flexural tests on lightweight aggregate concrete beams

  • Badogiannis, E.G.;Kotsovos, M.D.
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.317-334
    • /
    • 2014
  • The work is concerned with an investigation of the advantages stemming from the use of lightweight aggregate concrete in earthquake-resistant reinforced concrete construction. As the aseismic clauses of current codes make no reference to lightweight aggregate concrete beams made of lightweight aggregate concrete but designed in accordance with the code specifications for normal weight aggregate concrete, together with beams made from the latter material, are tested under load mimicking seismic action. The results obtained show that beam behaviour is essentially independent of the design method adopted, with the use of lightweight aggregate concrete being found to slightly improve the post-peak structural behaviour. When considering the significant reduction in deadweight resulting from the use of lightweight aggregate concrete, the results demonstrate that the use of this material will lead to significant savings without compromising the structural performance requirements of current codes.

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

Parametric Study on an Improved Mesh-Free Crack Analysis Technique Using Singular Basis Function (특이기저함수를 사용한 개선된 Mesh-Free 균열해석기법에 대한 파라메타 연구)

  • 이상호;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.19-26
    • /
    • 2001
  • Previously, an improved crack analysis technique based on Element-Free Galerkin Method (EFGM) which includes a discontinuity function and a singular basis function was presented. The technique needs neither addition of nodes nor modification of the model, but it shows some dependency on the formulation and modeling parameters such as the class of weight function, the size of compact support, dilation parameter and the range controlled by the singular basis function. For those parameters, a parametric study was performed on the calculation of a discrete error and then, a guideline for the choice of adequate parameters in the technique was proposed.

  • PDF

Numerical Design Optimization of Mooring Dolphin of Steel Pile Type (강관말뚝식 계류돌핀의 수치적 설계최적화)

  • 이나리;류연선;김정태;서경민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.237-244
    • /
    • 1998
  • Optimum design of mooring dolphin is numerically investigated. Design optimization problem of mooring dolphin is first formulated. Geometry and cross sections of piles are used as design variables. Design objective is the total weight of steel piles of mooring dolphin and the constraints of stress, penetration depth, lower and upper bounds on design variables are imposed. Based on the design variable linking and fixing, several class of design variations are sought. For the numerical optimization, both PLBA( Pshenichny-Lim-Belegundu-Arora) program and DNCONF subroutine code in IMSL library are used. For a dolphin with 20 steel piles, vertical and inclined, optimum designs for different cases are successfully obtained, which can be applied for the mooring of a large floating structure.

  • PDF

Automatic Design of Steel Frame Using Nonlinear Analysis (비선형 해석을 이용한 강뼈대구조물의 자동화설계)

  • 김창성;마상수;김승억
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.287-294
    • /
    • 2002
  • An automatic design method of steel frames using nonlinear analysis is developed. The geometric nonlinearity is considered by the use of stability functions. A direct search method is used as an automatic design technique. The unit value of each member is evaluated by using LRFD Interaction equation. The member with the largest unit value Is replaced one by one with an adjacent larger member selected in the database. The weight of the steel frame is taken as an objective function. Load-carrying capacities, deflections, interstory drifts, and ductility requirement are used as constraint functions. Case study of a three-dimensional two story frame are presented.

  • PDF

Flexural Characteristics of GFRP Composite Deck (유리섬유 복합소재 데크의 휨 거동 특성)

  • 주성애;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.189-196
    • /
    • 2001
  • Recent days composite bridge deck is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite sandwich deck models of hat, box, and triangular section type were fabricated by VARTM process. For those models, three point flexural test was carried out both in strong and weak axis. The experimental results are compared with each other to determine efficient section type. Also finite element analysis was performed and compared with experiments to verify analysis model. It has been demonstrated that composite sandwich deck can be used as bridge deck in the new construction and rehabilitation work.

  • PDF

Optimal Design of High-Speed Railway Bridges Considering Static and Dynamic Constraints (정적 및 동적 제약조건을 고려한 고속철도 교량의 최적화 설계)

  • 안예준;신영석;신동구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.135-142
    • /
    • 1999
  • Plate girder bridges for tile Korean high-speed railway are optimally designed. Static and dynamic constraints are all considered. The design variables are the thicknesses and the lengths of the plates that are used to form I-shaped main girders with variable cross-sections. And the objective function is tile steel weight of a main girder. A C++ based design program is developed; this program interfaces with a FORTRAN based optimization program ADS. From the results of optimal design for various span lengths, it is observed that the deck vertical acceleration is one of the most important constraints in a special range of tile span length. Front a parametric study, sensitivity of the optimal design to static as well as dynamic constraints are presented.

  • PDF