• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.028 seconds

A Study on Improvement of 100 Tons Toggle Injection Molding Machine's Weight Using Numerical Analysis (수치해석을 이용한 토글식 100톤 사출성형기의 중량 개선에 관한 연구)

  • Han, Seong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4713-4718
    • /
    • 2013
  • Nowadays, three-dimensional computer added design(3D CAD) tool are widely and actively used for design of mechanical machine. Because using the tool is more effective to understand design concept and to collaborate with other operation than using two-dimensional design tool. In this study, the 3D CAD tool which is called I-DEAS was applied for three-dimensional modeling of main parts and assembling of modeled parts for identification the entire shape of a injection molding machine. In addition, a study was also performed regarding reduction for the weight of main plates for saving production cost and energy in the machine. A finite element method(FEM) program in I-DEAS tool was used for the improvement study. First, the current main plates were structural analysed and then the plate deformations, weak regions and stress distributions were graped. By the FEM results, the 2nd improved designing of the plates was conducted such as reinforcement or slimming of the plate wall thickness. The 2nd structural FEM was performed for verification of the redesigned plates and then the FEM results were compared with the 1st FEM's result. The weight of the main plates were averagely reduced approximately 3 - 7%. By these results, it was seemed that the improved plates have a useful availability.

Plastic Analysis and Minimum Weight Design of Plane Frame Structures (평면(平面) 뼈대 구조물(構造物) 소성해석(塑性解析) 및 최소중량(最小重量) 설계(設計))

  • Lee, Dong Whan;Yang, Chang Hyun;Whang, Won Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.111-120
    • /
    • 1986
  • Steel frame structures are widely used in construction because of their efficient strength and rigidity and considered proper cases for design and analysis using concept of plastic behavior. The purpose of plastic analysis is to determine the collapse load of a structure when the plastic moments of its members are given, and optimal plastic design is to compute the plastic moments of the members that minimize total structural weight. In this paper, the plastic analysis and optimal design are performed by using the static approach and solved by the simplex method. From the result of the analysis the solutions by this study show more efficiency in calculations. Also, the structural weight solved by the simplex method in case of two story frame is proved more economical than the one using the elastic design around 24%.

  • PDF

Optimization of the Integrated Seat for Crashworthiness Improvement (일체형 시트의 충돌특성 개선을 위한 최적설계)

  • 이광기;이광순;박현민;최동훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.345-351
    • /
    • 2003
  • Due to increasing legal and market demands for safety in the automotive design process, the design of integrated seat is important more and mote because it should satisfy the conflict between stronger and lower weight for safety and environmental demands. In this study for crash simulations, the numerical simulations have been carried out using the explicit finite element program LS-Dyna according to the FMVSS 210 standard for safety test of seat. Since crash simulations are very time-consuming and a series of simulations that does not lead to a better result is very costly, the optimization method must be both efficient and reliable. As a result of that, statistical approaches such as design of experiments and response surface model have been successfully implemented to reduce time-consuming LS-Dyna simulations and optimize the safety and environmental demands together with nonlinear optimization algorithm. Design of experiments is used lot exploring the design space of maximum displacement and total weight and for building response surface models in order to minimize the maximum displacement and total weight of integrated seat.

Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans (다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • In this paper, design technique using genetic algorithms(GA) for design optimization of composite leaf springs is presented here. After the initial design has been validated by the car plate spring as a finite element model, the genetic algorithm suggests the process of optimizing the number of layers of composite materials and their angles. Through optimization process, the weight reduction process of leaf springs and the number of repetitions are compared to the existing algorithm results. The safety margin is calculated by organizing a finite element model to verify the integrity of the structure by applying an additive sequence optimized through the genetic algorithm to the structure. When GA is applied, layer thickness and layer angle of complex leaf springs have been obtained, which contributes to the achievement of minimum weight with appropriate strength and stiffness. A reduction of 65.6% original weight is reached when a leaf steel spring is replaced with a leaf composite spring under identical requirement of design parameters and optimization.

Cost Analysis of Asphalt Pavements Reinforced with Glass Fiber and Polymer Modified Using Falling Weight Deflectometer (Falling Weight Deflectometer를 이용한 섬유보강 아스팔트 및 폴리머 개질 아스팔트 포장의 비용 효과 분석)

  • Kim, Boo-Il;Lee, Moon-Sup;Jeon, Sung-Il;Kim, Sang-Kyu
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.153-160
    • /
    • 2009
  • Falling Weight Deflectometer (FWD) tests were performed to evaluate the structural capacity of glass fiber reinforced (GFR), polymer modified (PM), and unmodified asphalt pavement in Korea-LTPP (Long Term Pavement Performance) section. FWD tests showed that the tensile strains of GFR and PM asphalt pavements at the bottom of asphalt layer were 29% and 21% less than that of unmodified asphalt pavement. The structural capacity was then used as a performance criterion for calculating the cost effect of GFR and PM asphalt pavements. From the results, 5cm of asphalt layer thickness was reduced by applying GFR asphalt, and 3cm by applying PM asphalt. However, construction cost of PM and GFR asphalt pavement were increased due to the higher GFR and PM asphalt price. Life cycle cost analysis showed that the initial construction cost of GFR and PM asphalt pavement were higher but the management and user cost were less than those of unmodified asphalt pavement.

  • PDF

Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector (해양자동채염기의 최소중량설계를 위한 메타모델 기반 근사최적화)

  • Song, Chang Yong
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.109-117
    • /
    • 2021
  • In this paper, the meta-model based approximate optimization was carried out for the structure design of an ocean automatic salt collector in order to minimize the structure weight. The structural analysis was performed by using the finite element method to evaluate the strength performance of the ocean automatic salt collector in its initial design. In the structural analysis, it was evaluated the strength performance of the design load conditions. The optimum design problem was formulated so that design variables of main structure thickness would be determined by minimizing the structure weight subject to strength performance constraints. The meta-models used in the approximate optimization were the response surface method, Kriging model, and Chebyshev orthogonal polynomials. Regarding to the numerical characteristics, the solution results from approximate optimization techniques were compared to the results of non-approximate optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the ocean automatic salt collector.

Application of Linear Goal Programming to Large Scale Nonlinear Structural Optimization (대규모 비선형 구조최적화에 관한 선형 goal programming의 응용)

  • 장태사;엘세이드;김호룡
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.133-142
    • /
    • 1992
  • This paper presents a method to apply the linear goal programming, which has rarely been used to the structural opimization problem due to its unique formulation, to large scale nonlinear structural optimization. The method can be used as a multicriteria optimization tool since goal programming removes the difficulty in defining an objective function and constraints. The method uses the finite element analysis, linear goal programming techniques and successive linearization to obtain the solution for the nonlinear goal optimization problems. The general formulation of the structural optimization problem into a nonlinear goal programming form is presented. The successive linearization method for the nonlinear goal optimization problem is discussed. To demonstrate the validity of the method, as a design tool, the minimum weight structural optimization problems with stress constraints are solved for the cases of 10, 25 and 200 trusses and compared with the results of the other works.

  • PDF

The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft -Part II. Static Structural Design and Test (차세대 터보프롭 항공기용 최신 프로펠러 블레이드 연구 -Part II. 정적 구조 설계 및 시험)

  • Choi, Won;Park, Hyun-Bum;Kong, Chang-Duk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.336-343
    • /
    • 2014
  • Modern advanced-turboprop propellers are required to have high structural strength to cope with the thrust requirement at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Distributed Hybrid Genetic Algorithms for Structural Optimization (분산 복합유전알고리즘을 이용한 구조최적화)

  • 우병헌;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.407-417
    • /
    • 2003
  • Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.

Estimation of Structural Deformed Shapes Using Limited Number of Displacement Measurements (한정된 계측 변위를 이용한 구조물 변형 형상 추정)

  • Choi, Junho;Kim, Seungjun;Han, Seungryong;Kang, Youngjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1295-1302
    • /
    • 2013
  • The structural deformed shape is important information to structural analysis. If the sufficient measuring points are secured at the structural monitoring system, reasonable and accurate structural deformation shapes can be obtained and structural analysis is possible using this deformation. However, the accurate estimation of the global structural shapes might be difficult if sufficient measuring points are not secure under cost limitations. In this study, SFSM-LS algorithm, the economic and effective estimation method for the structural deformation shapes with limited displacement measuring points is developed and suggested. In the suggested method, the global structural deformation shape is determined by the superposition of the pre-investigated structural deformed shapes obtained by preliminary FE analyses, with their optimum weight factors which lead minimization of the estimate errors. 2-span continuous bridge model is used to verify developed algorithm and parametric studies are performed. By the parametric studies, the characteristics of the estimation results obtained by the suggested method were investigated considering essential parameters such as pre-investigated structural shapes, locations and numbers of displacement measuring points. By quantitative comparison of estimation results with the conventional methods such as polynomial, Lagrange and spline interpolation, the applicability and accuracy of the suggested method was validated.