• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.028 seconds

Structural Design of Door Assembly to Apply Tailor Welded Blanks Technique (합체박판 성형기법의 적용을 위한 자동차 도어의 구조 설계)

  • 황우석;이덕영;하명수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.228-233
    • /
    • 2002
  • TWB(Tailor Welded Blanks) is one of the recent techniques to reduce the weight and cost of the body members. To apply the TWB technique, we must decide the position of the welding line and the thickness of the welded blanks. Although many researchers have tried to check the formability of welded blanks, there are not so many researches from the structural point of view. In this paper, the TWB technique is applied to combine the door inner panel and the hinge face panel into one piece. The finite element structural analysis of the door assembly leads to the final design of the tailor welded door inner panel, which shows the mass reduction of 1.08kg without the sacrifice of the structural stiffness. The structural stiffness analysis includes the frame stiffness analysis, the belt line stiffness analysis, the door sagging analysis and the vibration analysis.

Spliced Two Span Bridge with the U-Type Precast Girders by Using the Secondary Moment (2차 모멘트를 이용한 U형 프리캐스트 거더의 연속화)

  • 이환우;조은래;김광양
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.193-200
    • /
    • 1998
  • The precast prestressed concrete girders of I-type section are frequently employed to design the short-to-medium span bridge. However, its beam depth is greatly increased as its span length is increased over than about 30m. Therefore, the economic and aesthetic effectiveness are rapidly decreased in case of the span length over 30m. The purpose of this paper is to verify the structural safety on the new spliced two span bridge and analyze the variation of member forces and stress distribution according to the construction stages and time. The new spliced technique is performed by partial post tensioning and release in the U-type girders. The structural characteristics of this technique is the introduction of secondary moment to reduce the bending moment by self weight of precast U-type girders constructed in simply supported beam type. So, it is expected that the structural efficiency of this spliced bridge may be improved more than other techniques.

  • PDF

Structural Design of Double Hull Bulk Carrier (이중선체 벌크 캐리어의 선체 구조설계)

  • Cho, Kyu-nam;Song, Ha-Cheol;Choun, Byoung-hee;Kim, Min-Won;Kim, Min
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.303-310
    • /
    • 2002
  • After many casualties with conventional bulk carriers in recent years, double hull bulk carrier was proposed to enhance the structural safety of side shell and transverse bulkhead. In this paper, two alternative structural designs of double hull bulk carrier were executed based on the Lloyd's rule, and the results were examined in comparison with the existing single hull bulk carrier in the viewpoints of the increase of weight and construction cost. The relative construction concept was used to certify the economical validity of double hull bulk carrier.

  • PDF

Mechanism Modeling and Structural Analysis of the Fuel Handling Machine in KALIMER Reactor (KALIMER 원자로 핵연료 교환기의 메커니즘 모델링 및 구조해석)

  • 김석훈;이재한
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.131-138
    • /
    • 2002
  • The fuel handling machine handles the core assembly in refueling period of the reactor, it is necessary to predict the motion and structural integrity of it. The kinetic analysis of the fuel handling machine was carried out for the refueling motion. The reaction forces at the joints of machine were calculated with IDEAS code considering the weight of the machine and the loading force of the core assembly, Also, the structural analysis for the machine modeled by lumped-mass and beam elements was performed by using ANSYS code. The stresses and deformations were calculated for the equivalent static force based on the kinetic analysis and the seismic loads. The calculated displacements and stresses are quite low compared with allowable limits.

  • PDF

Buckling Behavior of Pultruded Composite Structural Member (인발성형 복합소재 구조부재의 좌굴특성 분석)

  • 이성우;김현정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.67-74
    • /
    • 2000
  • Recently western countries are now beginning to use ACM (Advanced Composite Material) in the construction industry. Compared with conventional construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant properties, etc. Among other fabrication process of ACM, pultrusion is one of the promising one for civil infrastructure application. In this paper, the structural characteristics of pultruded glass fiber reinforced composite structural member of angle and tube type were studied. Experiments for compression were performed for those members along with finite element buckling analysis with ABAQUS. The experimental and analytic results were compared each other and they were also compared with predicted values using coded formulae.

  • PDF

Structural Analysis and Safety of FCT Inspection Automation System (FCT 검사 자동화 System의 구조해석 및 구조 안전성에 관한 연구)

  • Jeong, Hae-Jin;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.114-119
    • /
    • 2022
  • The analysis conditions were established using the self-weight of the FCT automation equipment, and natural frequency analysis was performed under the same conditions. For the structural analysis, 3D modeling was performed using Inventor, and structural analysis was performed using the Ansys workbench. From the structural analysis, it was concluded that the resulting values of the stress and deformation of the equipment do not affect the equipment. From the dynamic analysis, the resonance does not occur in the equipment driving area, and thus it is judged to be stable.

Examining Change Order Reasons for Non-Structural Utility Support Projects in Healthcare Facilities

  • Genota, Naomi P.;Kim, Joseph J.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.188-195
    • /
    • 2022
  • Although issuing change orders is a common practice in the construction phase of any project, non-structural utility subcontractors are struggling and seek to find a way to reduce change orders. Therefore, this paper presents the analysis results on change orders to cultivate possible suggestions and solutions on how to reduce or minimize change orders in mechanical, electrical, and plumbing (MEP) works. Change orders in non-structural utility works are analyzed based on six categories such as rerouting and change of location, changes in weight, rejected design by Office of Statewide Health Planning and Development, District Structural Engineer, or the Structural Engineer of Record, unforeseen conditions, changed equipment, and owner-initiated change. The analysis findings showed that rerouting and changing location is the most significant cause, followed by unforeseen conditions. The results not only contribute to the existing body of knowledge on change order research area, but also help MEP contractors reduce the time and cost of change orders.

  • PDF

A matrix displacement formulation for minimum weight design of frames

  • Orakdogen, Engin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.473-489
    • /
    • 2002
  • A static linear programming formulation for minimum weight design of frames that is based on a matrix displacement method is presented in this paper. According to elementary theory of plasticity, minimum weight design of frames can be carried out by using only the equilibrium equations, because the system is statically determinate when at an incipient collapse state. In the present formulation, a statically determinate released frame is defined by introducing hinges into the real frame and the bending moments in yield constraints are expressed in terms of unit hinge rotations and the external loads respectively, by utilizing the matrix displacement method. Conventional Simplex algorithm with some modifications is utilized for the solution of linear programming problem. As the formulation is based on matrix displacement method, it may be easily adopted to the weight optimization of frames with displacement and deformation limitations. Four illustrative examples are also given for comparing the results to those obtained in previous studies.

The Examples of Weight Reduction Design-(2) (Weight Reduction Design의 선례-(2))

  • Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.97-104
    • /
    • 2006
  • The geometric configuration in the weight reduction designis very required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape concerned with conceptual design of structure is important. The method used in this paper combines three optimization techniques, where the shape and physical dimensions of the structure and material distribution are hierachically optimized, with the maximum rigidity of structure and lightweight. As the results, the technology of weight reduction design is considered in designs of aluminum control arm and inner panel of door.

An Evaluation on the Sound Insulation Performance of Drywall for High-Rise Buildings (초고층 건물에 적용 가능한 건식벽체의 차음성능 평가)

  • Lee, Sang-Woo;Yoo, Ho-Chun;Lee, Su-Yeal;Jung, Gap-Chul;Jung, Young-Min
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.3-8
    • /
    • 2007
  • Recently, the structural system of public residential buildings has been changed from the reinforced concrete (RC) wall system to the (PC) wall and moment resisting systems. Thus, it is important to develop the suitable wall system in accordance with the trend of the modern structural system. This paper presents the basic study on the suitable boundary wall in high-rise buildings. The research also demonstrates the evaluation results on sound characteristics in the aspect of sound insulation. The evaluation of sound insulation capability for the commercialized wall structure was conducted based on literature survey while the measurement of sound insulation capability for the light-weght EPP concrete was performed in according to KS F2808 in laboratory. The main objective of this research is to propose the most suitable dry wall system as a sound insulation structure through the comparison and analysis of frequency characteristics and weight-acoustic attenuation.