• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.026 seconds

Screening and Purification of an Antimicrobial Peptide from the Gill of the Manila Clam Ruditapes philippinarum (바지락(Ruditapes philippinarum) 아가미로부터 항균 펩타이드의 탐색 및 정제)

  • Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2016
  • This study screened the biological activity of an acidified gill extract of the Manila clam Ruditapes philippinarum including antimicrobial, hemolytic, membrane permeabilization, and DNA-binding activity, and purified the antimicrobial material. The acidified gill extract showed potent antimicrobial activity against Bacillus subtilis and Escherichia coli without significant hemolytic activity, but showed no membrane permeabilization or DNA-binding ability. An antimicrobial material was purified from the acidified gill extract using C18 reversed-phase and cation-exchange high-performance liquid chromatography (HPLC). Treatment of the purified material with trypsin completely abolished all of the antibacterial activity against Bacillus subtilis, suggesting that the purified material is a proteinaceous antibiotic. The molecular weight of the purified material was 2571.9 Da, but no primary structural information was obtained due to N-terminal blocking. A future study should confirm the primary structure. Our results suggest that the Manila clam gill contains proteinaceous antibiotics that have a role in first-line defense. This information could be used to better understand the Manila clam innate immune system.

Purification and Partial Characterization of an Acidic Polysaccharide with Complement Fixing Ability from the Stems of Avicennia Marina

  • Fang, Xubo;Jiang, Bo;Wang, Xiaolan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.546-555
    • /
    • 2006
  • An acidic polysaccharide fraction that had high anti-complementary activity was isolated from the stems of Grey Mangrove in 0.15% yield. The final fractions was designated HAM-3-IIb-II. The polysaccharide fraction appeared to be homogenous by high performance size exclusion chromatography with an estimated molecular weight of 105 kDa. The isolated polysaccharide is more effective than polysaccharide K (PSK) in its anti-complementary activity at 58 ${\mu}g/ml$ of PSK and 23 ${\mu}g/ml$ of HAM-3-IIb-II that inhibit 50% of complement activity in the complement fixation assay. Structural studies indicated that HAM-3-IIb-II was rich in galacturonic acid along with arabinose, galactose and rhamnose, characterizing a pectin-type polysaccharide, which was also confirmed by FT-IR spectrum. The presence of rich neutral sugar side chains of arabinogalactans may have contributed to the expression of high activity. Traditionally, this mangrove plant is used for medicinal purposes and it appears to have some scientific applications.

A Study on Strength Evaluation of Adhesive Joints(1st Report, Stress Analysis and Fracture Strength of Adhesive Single-Lap Joint) (접착이음의 강도평가에 관한 연구 (제1보 겹치기 접착이음의 응력해석과 파괴강도))

  • 정남용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.667-674
    • /
    • 1992
  • Recently advantages in composite and light weight material technique have led to the increased use of structural adhesives in various industries. In spite of such wide application of the adhesive joints, the evaluation method of fracture strength and design methodology of them, have not been established. In this study finite element method, theoretical and experimental analyses were investigated according to changes of lap length and adhesive for adhesive single-lap joint. As the results, the strength evaluation of adhesive joint by conventional nominal stress, was pointed out inadequate strength evaluation and design method regardless stress singularity, stress distribution and crack propagation in its adhesive layer. Also, it was examined the problems to apply fracture mechanics by means of static and fatigue test.

Multi-Modal Vibration Control of Truss Structures Using Piezoelectric Actuators (압전작동기를 이용한 트러스 구조물의 다중 모드 진동제어)

  • Ju, Hyeong-Dal;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2502-2512
    • /
    • 2000
  • Truss structures are widely used in many space structures, such as large antenna systems, space stations, precision segmented telescopes because they are light in weight and amenable in assembly or deployment. But, due to the low damping capacity, they remain excited for a long time once disturbed. These structural vibrations can reduce life of the structures and cause unstable dynamic characteristics. In this research, vibration suppression experiment has carried out with a three-dimensional 15-member truss structure using two piezoelectric actuators. Piezoelectric actuators which consist of stacks of thin piezoelectric material disks are directly inserted to the truss structure collocated with the strain sensors. Each actuator is controlled digitally in decentralized manner, based on local integral and proportional feedback. The optimal positions of the actuators are determined by the modal damping ratio and the control force. Numerical simulation has carried out to determine optimal position of each actuator.

A Study on the Development of the Producing Zone Type Marine Dryer (On Weight Reduction Rate and Temperature Variations) (산지형 수산 건조시스템 개발에 관한 연구 (무게 감소율과 온도변동을 중심으로))

  • Kim, Kyong-Suk;Mun, Soo-Beom;Lee, Choon-Wha;Choe, Soon-Yeol;Park, Moon-Kab;Kim, Kyung-Kum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.477-484
    • /
    • 2010
  • The majority of currently domestic dried sea foods is holding sanitary safety on storage and distribution, a structural problem to be in quality serious to sun drying. This paper the productive times and the on-site operation that production is fixed are easy, and it have reported the experimental results that carried out on development of a drying system toward field which can keep the highest quality and economy.

Optimal Design for CNG Composite Pressure Vessel Using Basalt Fiber (현무암 섬유를이용한 CNG 복합재 압력용기의 최적설계)

  • Jang, Hyo Seong;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2015
  • Compressed natural gas (CNG) composite vessels for vehicles have been generally made of 34CrMo4 for a inner liner part and E-glass/epoxy for a composite layer part. But, there is a problem of material loss of CNG composite vessels used in vehicles due to the design of excessive thickness of the liner. And, light weight of the CNG composite vessel is required for improving fuel efficiency. In this study, optimal design for CNG composite pressure vessel was performed by using basalt fiber, which is the environment-friendly material having a good mechanical strength. The optimal thickness of each part (inner liner and composite layer) was determined by theoretical analysis and FEA for satisfying structural safety and lightweight of the vessel. Also, for improving fatigue life, optimal autofrettage pressure was derived from FEA results.

Evaluation of Clamping Characteristics for Subminiature Screws According to Thread Angle Variation (초소형 나사의 나사산 각도변화에 따른 체결특성 평가)

  • Min, Kyeong Bin;Kim, Jong Bong;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.839-846
    • /
    • 2014
  • Recent trends in the miniaturization and weight reduction of portable electronic parts have driven the use of subminiature screws with a micrometer-scale pitch. As both screw length and pitch decrease in subminiature screws, the resulting clamping force becomes diminishes. In this work, Finite element (FE) analysis is performed to evaluate clamping force of a screw assembly, with a comparison with experimental result. To improve clamping force of subminiature screws, a new screw design is considered by modifying screw thread angle: the thread angle is varied as an asymmetric way unlike the conventional symmetric thread angle. FE analyses are then performed to compare the clamping characteristics of each subminiature screw with different thread angle. The effect of thread angles on the clamping force is then discussed in terms of structural safety for both positive and negative screws.

Analysis of Magneto-rheological Fluid Based Semi-active Squeeze Film Damper and its Application to Unbalance Response Control of Rotor (자기유변유체를 이용한 반능동형 스퀴즈 필름 댐퍼의 해석 및 회전체 불균형 응답 제어)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.354-363
    • /
    • 2005
  • Squeeze film dampers (SFDs) have been commonly used to effectively enhance the dynamic behavior of the rotating shaft supported by rolling element bearings. However, due to the recent trends of high operating speed, high load capacity and light weight in rotating machinery, it is becoming increasingly important to change the dynamic characteristics of rotating machines in operation so that the excessive vibrations, which may occurparticularly when passing through critical speeds or unstable regions, can be avoided. Semi-active type SFDs using magneto-rheological fluid (MR fluid), which responds to an applied magnetic field with a change in rheological behavior, are introduced in order to find its applications to rotating machinery as an effective device attenuating unbalance responses. In this paper, a semi-active SFD using MR fluid is designed, tested, and identified to investigate the capability of changing its dynamic properties such as damping and stiffness.In order to apply the MR-SFD to the vibration attenuation of a rotor, a systematic approach for determining the damper's optimal location is investigated, and also, a control algorithm that could improve the unbalance response characteristics of a flexible rotor is proposed and its control performance is validated with a numerical example.

Behaviour of transmission line conductors under tornado wind

  • Hamada, Ahmed;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.369-391
    • /
    • 2016
  • Electricity is transmitted by transmission lines from the source of production to the distribution system and then to the end users. Failure of a transmission line can lead to devastating economic losses and to negative social consequences resulting from the interruption of electricity. A comprehensive in-house numerical model that combines the data of computational fluid dynamic simulations of tornado wind fields with three dimensional nonlinear structural analysis modelling of the transmission lines (conductors and ground-wire) is used in the current study. Many codes of practice recommend neglecting the tornado forces acting on the conductors and ground-wires because of the complexity in predicting the conductors' response to such loads. As such, real transmission line systems are numerically simulated and then analyzed with and without the inclusion of the lines to assess the effect of tornado loads acting on conductors on the overall response of transmission towers. In addition, the behaviour of the conductors under the most critical tornado configuration is described. The sensitivity of the lines' behaviour to the magnitude of tornado loading, the level of initial sag, the insulator's length, and lines self-weight is investigated. Based on the current study results, a recommendation is made to consider conductors and ground-wires in the analysis and design of transmission towers under the effect of tornado wind loads.

Load transfer and energy absorption in transversely compressed multi-walled carbon nanotubes

  • Chen, Xiaoming;Ke, Changhong
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.273-286
    • /
    • 2017
  • We present a simple and easy-to-implement lumped stiffness model to elucidate the load transfer mechanism among all individual tube shells and intertube van der Waals (vdW) interactions in transversely compressed multi-walled carbon nanotubes (CNTs). Our model essentially enables theoretical predictions to be made of the relevant transverse mechanical behaviors of multi-walled tubes based on the transverse stiffness properties of single-walled tubes. We demonstrate the validity and accuracy of our model and theoretical predictions through a quantitative study of the transverse deformability of double- and triple-walled CNTs by utilizing our recently reported nanomechanical measurement data. Using the lumped stiffness model, we further evaluate the contribution of each individual tube shell and intertube vdW interaction to the strain energy absorption in the whole tube. Our results show that the innermost tube shell absorbs more strain energy than any other individual tube shells and intertube vdW interactions. Nanotubes of smaller number of walls and outer diameters are found to possess higher strain energy absorption capacities on both a per-volume and a per-weight basis. The proposed model and findings on the load transfer and the energy absorption in multi-walled CNTs directly contribute to a better understanding of their structural and mechanical properties and applications, and are also useful to study the transverse mechanical properties of other one-dimensional tubular nanostructures (e.g., boron nitride nanotubes).