• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.027 seconds

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • Lotfollahi-Yaghin, Mohammad Ali;Kafshgarkolaei, Hassan Jafarian;Allahyari, Hamed;Ghazvini, Taher
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.55-67
    • /
    • 2015
  • Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

Longitudinal anti-cracking analysis for post-tensioned voided slab bridges

  • Zhou, Zhen;Meng, Shao-Ping;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • Post-tensioned concrete voided slab girders are widely used in highway bridge constructions. To obtain greater section hollow rate and reduce the self-weight, the plate thickness of slab girders are designed to be small with the adoption of flat anchorage system. Since large prestress is applied to the anchor end section, it was found that longitudinal shear cracks are easy to occur along the voided slab girder. The reason is the existence of great shearing effect at the junction area between web and bottom (top) plate in the anchor end section. This paper focuses on the longitudinal anti-cracking problem at the anchor end of post-tensioned concrete voided slab girders. Two possible models for longitudinal anticracking analysis are proposed. Differential element analysis method is adopted to derive the solving formula of the critical cracking state, and then the practical analysis method for longitudinal anti-cracking is established. The influence of some factors on the longitudinal anti-cracking ability is studied. Results show that the section dimensions (thickness of bottom, web and top plate) and prestress eccentricity on web plate are the main factors that influence the anti-cracking ability. Moreover, the proposed method is applied into three engineering examples to make longitudinal anti-cracking verification for the girders. According to the verification results, the design improvements for these girders are determined.

Loading capacity evaluation of composite box girder with corrugated webs and steel tube slab

  • He, Jun;Liu, Yuqing;Xu, Xiaoqing;Li, Laibin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.4
    • /
    • pp.501-524
    • /
    • 2014
  • This paper presents a type of composite box girder with corrugated webs and concrete filled steel tube slab to overcome cracking on the web and reduce self-weight. Utilizing corrugated steel web improves the efficiency of prestressing introduced into the top and bottom slabs due to the accordion effect. In order to understand the loading capacity of such new composite structure, experimental and numerical analyses were conducted. A full-scale model was loaded monotonically to investigate the deflection, strain distribution, loading capacity and stiffness during the whole process. The experimental results show that test specimen has enough loading capacity and ductility. Based on experimental works, a finite element (FE) model was established. The load-displacement curves and stress distribution predicted by FE model agree well with that obtained from experiments, which demonstrates the accuracy of proposed FE model. Moreover, simplified theoretical analysis was conducted depending on the assumptions which were confirmed by the experimental and numerical results. The simplified analysis results are identical with the tested and numerical results, which indicate that simplified analytical model can be used to predict the loading capacity of such composite girder accurately. All the findings of present study may provide reference for the application of such structure in bridge construction.

Effects of infill walls on RC buildings under time history loading using genetic programming and neuro-fuzzy

  • Kose, M. Metin;Kayadelen, Cafer
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.401-419
    • /
    • 2013
  • In this study, the efficiency of adaptive neuro-fuzzy inference system (ANFIS) and genetic expression programming (GEP) in predicting the effects of infill walls on base reactions and roof drift of reinforced concrete frames were investigated. Current standards generally consider weight and fundamental period of structures in predicting base reactions and roof drift of structures by neglecting numbers of floors, bays, shear walls and infilled bays. Number of stories, number of bays in x and y directions, ratio of shear wall areas to the floor area, ratio of bays with infilled walls to total number bays and existence of open story were selected as parameters in GEP and ANFIS modeling. GEP and ANFIS have been widely used as alternative approaches to model complex systems. The effects of these parameters on base reactions and roof drift of RC frames were studied using 3D finite element method on 216 building models. Results obtained from 3D FEM models were used to in training and testing ANFIS and GEP models. In ANFIS and GEP models, number of floors, number of bays, ratio of shear walls and ratio of infilled bays were selected as input parameters, and base reactions and roof drifts were selected as output parameters. Results showed that the ANFIS and GEP models are capable of accurately predicting the base reactions and roof drifts of RC frames used in the training and testing phase of the study. The GEP model results better prediction compared to ANFIS model.

Analysis of multi leaf spring based on contact mechanics - a novel approach

  • Kumaravelan, R.;Ramesh, S.;Gandhi, V.C. Sathish;Agu, M. Joemax;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • A leaf spring, especially the longitudinal type is liable and persistent element in automotive suspension system. In the present scenario the composite materials are widely used in the automobile industries has shown a great interest in the replacement of steel spring due to high strength by weight ratio. Previous investigations focused on stresses and displacement analysis of single leaf spring for different materials. The present work aims to design and analysis of leaf spring for two different cases by considering the Young's modulus to yield strength ratio. In the first case the analysis deals with the design and analysis of a single cantilever solid triangle beam which is an equivalent beam of a spring with three leaves having uniform strength. In the second case a 3-beams of rectangular cross section has been considered which is equivalent to a spring with three leaves. The analysis was carried out based on contact mechanics approach. The results were compared, that the fiberglass composite leaf spring is suitable for high loading capacity, reliability and efficiency.

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad;Gerdooei, Mahdi;Nosrati, Hasan Ghaforian
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.737-745
    • /
    • 2020
  • Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.

Collapse assessment and seismic performance factors in tall tube-in-tube diagrid buildings

  • Khatami, Alireza;Heshmati, Mahdi;Aghakouchak, Ali Akbar
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.197-214
    • /
    • 2020
  • Diagrid structures have been introduced as a fairly modern lateral load-resisting system in the design of high-rise buildings. In this paper, a novel diagrid system called tube-in-tube diagrid building is introduced and assessed through pushover and incremental dynamic analyses. The main objectives of this paper are to find the optimum angle of interior and exterior diagrid tube and evaluate the efficiency of diagrid core on the probability of collapse comparing to the conventional diagrid system. Finally, the seismic performance factors of the proposed system are validated according to the FEMA P695 methodology. To achieve these, 36-story diagrid buildings with various external and internal diagonal angles are designed and then 3-D nonlinear models of these structures developed in PERFORM-3D. The results show that weight of steel material highly depends on diagonal angle of exterior tube. Adding diagrid core generally increases the over-strength factor and collapse margin ratio of tall diagrid buildings confirming high seismic safety margin for tube-in-tube diagrid buildings under severe excitations. Collapse probabilities of both structural systems under MCE records are less than 10%. Finally, response modification factor of 3.0 and over-strength factor of 2.0 and 2.5 are proposed for design of typical diagrid and tube-in-tube diagrid buildings, respectively.

Finite Element Analysis of Densification of Mg Powders during Equal Channel Angular Pressing: Effect of Sheath (유한요소법을 이용한 등통로각압출 공정의 마그네슘 분말 고형화 거동 해석: 피복재 효과)

  • Yoon, Seung-Chae;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.85-90
    • /
    • 2009
  • Magnesium and its alloys are attractive as light weight structural/functional materials for high performance application in automobile and electronics industries due to their superior physical properties. In order to obtain high quality products manufactured by the magnesium powders, it is important to control and understand the densification behavior of the powders. The effect of the sheath surrounding the magnesium powders on the plastic deformation and densification behavior during equal channel angular pressing was investigated in the study by experimental and the finite element methods. A modified version of Lee-Kim's plastic yield criterion, notably known as the critical relative density model, was applied to simulate the densification behavior of magnesium powders. In addition, a new approach that extracts the mechanical characteristics of both the powder and the matrix was developed. The model was implemented into the finite element method, with which powder compaction under equal channel angular pressing was simulated.

Thermal-Structure Analysis under High Temperature for Bracket Types adhered to Cone Shape (Cone 형상의 브라켓 용접부 타입에 따른 열구조 해석)

  • Kim, Joo-Yeon;Park, Soon-Sang;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.926-928
    • /
    • 2011
  • Material used in aerospace field is exposed in high temperature environments, and the required important factors of material is high strength and low weight. These conditions are satisfying material, as in the titanium alloy has been used mainly. In this paper, Cone shaped brackets that attach to the case, in order to avoid the difficulty of welding position, sheet attached to the brackets welded on, then the way Cone is proposed. Existing methods and proposed method of analysis under the same conditions through thermal stress and structural analysis adequacy of the proposed bracket types were analyzed. The program was used to analysis the ABAQUS/CAE.

  • PDF