• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.032 seconds

A study on the conceptual design of carbodies with shell type sections for weight reduction using the material substitution technique (쉘형 단면을 가진 차체구조의 소재대체 경량화를 위한 개념설계 연구)

  • Koo Jeong-Seo;Cho Hyun-Jig;Jeon Yon-Sik;Cheong Seong-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1071-1082
    • /
    • 2005
  • In this paper is studied a theoretical approach to predict structural performances and weight reduction rates of a carbody with shell type sections in case that its materials have to be substituted. For the material substitution design of a carbody, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilizes some new indices derived from a structural point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of carbodies.

  • PDF

Analysis of nonionic surfactants and silicone polymers in cosmetic products using Matrix - assisted Laser Desorption/Ionization Time-of- flight Mass Spectrometry

  • Lee, Myoung-Hee;Lee, Gae-Ho;Yoo, Jong-Shin
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.480-507
    • /
    • 2003
  • A rapid and efficient method for analyzing the nonionic surfactants and silicone polymers, which control the shape and characteristics of cosmetic products and give influence on product quality, has been developed using Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI- TOF IMS). The MALDI-TOF/MS could easily and effectively determine the molecular weight distribution and monomer units of nonionic surfactants. As a result, creating a library of mass spectrum data of surfactants used in cosmetic products using MALDI-TOF/MS and analyzing surfactants extracted from the products may become a useful method for detailed structural characterization of the surfactants. Furthermore, the MALDI-TOF/MS analysis was effective in obtaining the spectrum of silicone polymers from which the molecular weight distribution could be determined. The repetition units and structural data could also be obtained through molecular mass peaks. Additionally, the monomer ratio and terminal groups as properties of silicone copolymers could be determined

  • PDF

Weight-reduction prediction for the conceptual design of carbody with shell type sections using the material substitution technique (쉘형 차체 구조의 소재대체 개념설계에 대한 경량화 예측 기법)

  • Koo, Jeong-Seo;Cho, Hyun-Jik
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.18-30
    • /
    • 2006
  • In this paper is studied a theoretical approach to predict structural performances and weight reduction rates of a car-body with shell type sections in case that its materials have to be substituted. For the material substitution design of a car-body, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilize some new indices derived from a structural performance point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of car-bodies.

  • PDF

System RBDO of truss structures considering interval distribution parameters

  • Zaeimi, Mohammad;Ghoddosian, Ali
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.81-96
    • /
    • 2019
  • In this paper, a hybrid uncertain model is applied to system reliability based design optimization (RBDO) of trusses. All random variables are described by random distributions but some key distribution parameters of them which lack information are defined by variation intervals. For system RBDO of trusses, the first order reliability method, as well as monotonicity analysis and the branch and bound method, are utilized to determine the system failure probability; and Improved (${\mu}+{\lambda}$) constrained differential evolution (ICDE) is employed for the optimization process. System reliability assessment of several numerical examples and system RBDO of different truss structures are proposed to verify our results. Moreover, the effect of different classes of interval distribution parameters on the optimum weight of the structure and the reliability index are also investigated. The results indicate that the weight of the structure is increased by increasing the uncertainty level. Moreover, it is shown that for a certain random variable, the optimum weight is more increased by the translation interval parameters than the rotation ones.

Optimum Structural Design of Mid-ship Section of D/H Tankers Based on Common Structural Rules (CSR 을 활용한 이중선각유조선 중앙단면의 최적구조설계)

  • Na, Seung-Soo;Jeon, Hyoung-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.151-156
    • /
    • 2008
  • It is necessary to perform the research works on the general structural designs and optimum structural designs of double hull tankers and bulk carriers due to the newly built Common Structural Rules(CSR). In this study, an optimum structural design of a mid-ship part of double hull oil tanker was carried out by using the CSR. An optimum structural design program was developed by using the Pareto optimal based multi-objective function method. The hull weight and fabrication cost obtained by the single and multi-objective function methods were compared with existing ship by the consideration of CSR and material cost which is recently increasing.

Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure (2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계)

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

Structural Optimization of a RC Building for Minimizing Weight (중량 최소화를 위한 RC 빌딩의 구조 최적설계)

  • Park, Chang-Hyun;Ahn, Hee-Jae;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.501-507
    • /
    • 2010
  • Structural optimization is performed to minimize the weight of a RC building structure, which has eight floors above ground and three underground, under gravity, wind, and seismic loads. Design optimization problem is formulated to find the values of the design variables that minimize the volume while satisfying various design and side constraints. To solved the optimization problem posed, several design techniques equipped in PIAnO, a commercial PIDO tool, are used. DOE is used to generate training points and structural analysis is performed using MIADS Gen, a general-purpose structural analysis CAE tool. Then, meta-models are generated from structural analysis results and accuracies of meta-models are evaluated. Next, design optimization is performed by using the verified meta-models and optimization technique equipped in PIAnO. Finally, we obtained optimal results, which could demonstrate the effectiveness of our design method.

Parametric modeling and shape optimization of four typical Schwedler spherical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Li, L.P.;Zhang, D.L.;Xue, Y.G.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.813-833
    • /
    • 2015
  • Spherical reticulated shells are widely applied in structural engineering due to their good bearing capability and attractive appearance. Parametric modeling of spherical reticulated shells is the basis of internal analysis and optimization design. In the present study, generation methods of nodes and the corresponding connection methods of rod elements are proposed. Modeling programs are compiled by adopting the ANSYS Parametric Design Language (APDL). A shape optimization method based on the two-stage algorithm is presented, and the corresponding optimization program is compiled in FORTRAN environment. Shape optimization is carried out based on the objective function of the minimum total steel consumption and the restriction condition of strength, stiffness, slenderness ratio, stability. The shape optimization of four typical Schwedler spherical reticulated shells is calculated with the span of 30 m~80 m and rise to span ratio of 1/7~1/2. Compared with the shape optimization results, the variation rules of total steel consumption along with the span and rise to span ratio are discussed. The results show that: (1) The left and right rod-Schwedler spherical reticulated shell is the most optimized and should be preferentially adopted in structural engineering. (2) The left diagonal rod-Schwedler spherical reticulated shell is second only to left and right rod regarding the mechanical behavior and optimized results. It can be applied to medium and small-span structures. (3) Double slash rod-Schwedler spherical reticulated shell is advantageous in mechanical behavior but with the largest total weight. Thus, this type can be used in large-span structures as far as possible. (4) The mechanical performance of no latitudinal rod-Schwedler spherical reticulated shell is the worst and with the second largest weight. Thus, this spherical reticulated shell should not be adopted generally in engineering.

Comparison of Customer Satisfaction Indices Using Different Methods of Weight Calculation (가중치 산출방법에 따른 고객만족도지수의 비교)

  • Lee, Sang-Jun;Kim, Yong-Tae;Kim, Seong-Yoon
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.201-211
    • /
    • 2013
  • This study compares Customer Satisfaction Index(CSI) and the weight for each dimension by applying various methods of weight calculation and attempts to suggest some implications. For the purpose, the study classified the methods of weight calculation into the subjective method and the statistical method. Constant sum scale was used for the subjective method, and the statistical method was again segmented into correlation analysis, principal component analysis, factor analysis, structural equation model. The findings showed that there is difference between the weights from the subjective method and the statistical method. The order of the weights by the analysis methods were classified with similar patterns. Besides, the weight for each dimension by different methods of weight calculation showed considerable deviation and revealed the difference of discrimination and stability among the dimensions. Lastly, the CSI calculated by various methods of weight calculation showed to be the highest in structural equation model, followed by in the order of regression analysis, correlation analysis, arithmetic mean, principal component analysis, constant sum scale and factor analysis. The CSI calculated by each method showed to have statistically significant difference.

A Complementary Analysis for the Structural Safety Evaluation of the Spent Nuclear Fuel Disposal Canister for the Canadian Deuterium and Uranium Reactor (중수로(CANDU)용 고준위폐기물 처분용기의 구조적 안전성 평가 보완 해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, a complementary analysis for the structural safety evaluation of the spent nuclear fuel disposal canister developed for the Canadian Deuterium and Uranium(CANDU) reactor for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been performed. However this developed structural model of the spent nuclear fuel disposal canister which has 33 spent nuclear fuel baskets and whose diameter is 122cm is too heavy to handle without any structural safety problem. Hence a lighter structural model of the spent nuclear fuel disposal canister which is easy to handle has been required to develop very much. There are two methods to reduce the weight of the CANDU canister model. The one is to alleviate severe design conditions such as external loads and safety factor. The other is to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number. Hence, in this paper a complementary analysis to alleviate such severe design conditions is carried out and simultaneously structural analyses to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number below 33 are carried out by varying the external load and the canister diameter for the reduction of the canister weight. The complementary analysis results show that the diameter of canister can be shortened below 122cm to reduce the weight of the spent nuclear fuel disposal canister.