• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.032 seconds

A Study on the Optimum Design of a Motor Shaft in Electric Vehicle Using HEEDS (HEEDS를 이용한 전기자동차에서의 모터 축 최적설계에 관한 연구)

  • Kim, Bong-Hwan;Jeong, Young-Jae;Lee, Chang-Ryeol;Lee, Byung-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.751-756
    • /
    • 2018
  • A study on the weight reduction of a motor shaft in electric vehicle by using optimum design technique was carried out. The structural analysis of a motor shaft was performed by using ANSYS to investigate the structural safety. We also used HEEDS to find the optimal hollow shaft thickness. When the material of the hollow shaft is changed to SCM822H by using ANSYS 14.5 and HEEDS MDO, the weight could be reduced by about 53 % compared to the conventional solid one. From this study, the optimized dimensions of a hollow shaft were determined for light weight design.

구조 방정식 모형 구축에 관한 실증적 고찰

  • 함형범;안창호
    • Journal for History of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.109-118
    • /
    • 2004
  • This study estimated direct factors that have effect to completion degree of game, and we constructs structural equation model that can evaluate completion degree of game using empirical analysis. For it, we obtained weight of components of game development by eigenvector method for analytic hierarchy process. Using calculated weight, we also let that components of game development is observating variable of X, and genre of game is observating variable of Y. And we constructs structural equation model with LISREL program

  • PDF

Structural Safety Evaluation System of Existing low-rise Reinforced Concrete Buildings to Remodeling (리모델링을 위한 기존 저층형 철근콘크리트의 안전성 평가 시스템)

  • 김진수;김창은
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.3
    • /
    • pp.69-80
    • /
    • 2003
  • This study researched problems of safety inspection method and current legislative system for the structure safety evaluation of Rahmen structure affected by remodeling. The elements of weight increase were examined in terms of differences of load moment, shear force, compressive stress and amount of steel before and after remodeling by structure analysis. The thorough examination for impacts of weight increase is indispensable to change of use or extension.

Fire Performance of Structural Lightweight Aggregate Concrete using PP fiber (PP섬유 혼입 고강도 경량골재콘크리트의 내화특성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.797-800
    • /
    • 2006
  • Normally, Structural light-weight aggregate concrete(LWC) has been main used in high rise building with the object of wight loss. In spite of LWC have the advantage of light-weight, limit the use of strength restrictions by reason that explosive spalling in fire. Especially, LWC is occurred serious fire performance deterioration by explosive spalling. Thus, this study is concerned with fire performance of LWC for the purpose of using PP fibers prevent to explosive spalling. From the experimental test result, LWC is happened explosive spalling.

  • PDF

Structural Design and Cost Evaluation of Double Hull Bulk Carrier (이중선체 벌크화물선의 선체구조설계 및 경제성 검토)

  • Song, H.C.;Yum, J.S.;Kim, B.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • After many casualties of conventional bulk carriers in recent years, a double hull bulk carrier was proposed to enhance the structural safety of a side shell and a transverse bulkhead. In this paper, two alternative structural designs of a double hull bulk carrier were carried out based on the Lloyd's rule. One has the double sided hull with longitudinal stiffeners and the other has that with a girder. The final structural design was examined in comparison with an existing single hull bulk carrier from the viewpoints of cargo hold capacity and the increases of weight and construction cost. Generally, the construction cost of a ship consists of the costs of material, labor and overhead cost. But, in this study, the relative construction cost concept was introduced to compare the economical validity more precisely. In this concept, fixed overhead cost is excluded in the assessment of construction cost, and only the variable overhead cost is added up to labor cost. As the result of this study, a double hull bulk carrier can be constructed within 1% increase of weight and construction cost.

  • PDF

A Study on Manufacturing Technology and Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조 안전성 평가 및 제작기술 연구)

  • Shin Kwang-Bok;;;Lee Sang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.43-49
    • /
    • 2006
  • We have evaluated the structural integrity of a sandwich composite train roof structure that can be a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof structure was 11.45 meters long and 1.76 meters wide. The finite element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-conditioned system. The 3D sandwich finite element model was introduced to examine the structural behavior of the hollow aluminum extrusion frames joined to both sides of the sandwich composite train roof. The results shown that the structural performance of the sandwich composite train roof under loading conditions specified is satisfaction and the use of aluminum reinforced frame and aluminum honeycomb core is beneficial with regard to weight saving and structural performance in comparison with steel reinforced frame and polyurethane foam core. Also, we have manufactured prototype of sandwich composite train roof structure on the basis of analysis results.

A Study on the Vibration Analysis of a Power Transmission Converter by Substructure Synthesis Method (부분구조합성법에 의한 동력전달 변화기의 진동해석에 관한 연구)

  • 박석주;왕지석;박성현;오창근;박영철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-57
    • /
    • 2000
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analysis by the Substructure Synthesis Method and FFM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem(i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one.

  • PDF

Structural Design Optimization of a Wafer Grinding Machine for Lightweight and Minimum Compliance Using Genetic Algorithm (유전자 알고리듬 기반 다단계 최적설계 방법을 이용한 웨이퍼 단면 연삭기 구조물의 경량 고강성화 최적설계)

  • Park H.M.;Choi Y.H.;Choi S.J.;Ha S.B.;Kwak C.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.81-85
    • /
    • 2005
  • In this paper, the structural design optimization of a wafer grinding machine using a multi-step optimization with genetic algorithm is presented. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints. The first design step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted among those good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a high precision wafer grinding machine. After optimization, both static and dynamic compliances are reduced more than $92\%\;and\;93\%$ compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

  • PDF

Structural Analysis of Running Machine Frame (런닝렁머신 프레임의 구조해석)

  • 이종선;김세환;이현곤
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.87-92
    • /
    • 2000
  • This study is object to structural analysis of running machine frame. The finite element model was developed to compute the stress, strain and natural frequency for running machine frame. For structural analysis using result from FEM Code. In other to structural analysis of running machine frame, many variables such as load condition, boundary condition and weight condition are considered.

Structural Analysis of Household Runninng Machine Frame (가정용 런닝머신 프레임의 구조해석)

  • 원종진;이종선;김형철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.85-90
    • /
    • 2001
  • This study is object to structural analysis of household running machine frame. The finite element model was developed to compute the stress, strain and natural frequency for household running machine frame. For structural analysis using result from FEM Code. In other to structural analysis of household running machine frame, many variables such as load condition, boundary condition and weight condition are considered.