• Title/Summary/Keyword: Structural Transition

Search Result 728, Processing Time 0.029 seconds

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials (NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화 )

  • JinUk Yoo;Sung Gyu Pyo
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.2
    • /
    • pp.57-70
    • /
    • 2024
  • Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

Studies on structural, optical, thermal and low energy shielding for gamma rays for the ZSBP glasses

  • Abeer S. Altowyan;M.I. Sayyed;Ashok Kumar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3796-3803
    • /
    • 2024
  • By employing the melt-quenching technique, the ZnO-SrO-B2O3-PbO (ZSBP) glasses have been successfully fabricated. The derivative of Absorption Spectra Fitting (DASF) method was used to study the energy band gap (Eg) of the glasses which decreases from 3.57 eV to 3.39 eV. The structural properties have been studied using the Raman spectroscopy. The glass transition temperature (Tg) decreases with increase in concentration of the lead oxide. The current study examines the radiation shielding properties at 30.80-444 keV. The addition of PbO to the glasses resulted in a proportionate increase in the mass attenuation coefficient (MAC), suggesting a diminishing tendency in radiation transmission. At 30.80 keV, the MAC values are extremely high and range from 18.06 to 21.11 cm2/g. As density rises, the half value layer (HVL) decreases. In addition, the average HVL (${\overline{HVL}}$) decreases. The glass thickness required to reduce the radiation intensity to 90 %, 50 %, 25 %, and 10 % of its initial value is investigated at an energy of 35.80 keV. The T90 %, T50 %, T25 %, and T10 % values are 0.0020, 0.0132, 0.0264, and 0.0439 cm, respectively. The results suggest that a greater thickness of the radiation barrier is necessary to attain the necessary degree of attenuation.

The Effects of Marital Status on Health among Older Women: The Moderating Effects of Age and Parent-Adult Child Relationships (노년기 여성의 결혼지위와 건강에 관한 종단 연구: 연령 및 부모-자녀 관계의 조절효과를 중심으로)

  • Son, Jeong-Yeon;Han, Gyoung-Hae
    • Korea journal of population studies
    • /
    • v.35 no.1
    • /
    • pp.211-238
    • /
    • 2012
  • Using data from Korean Longitudinal Study on Aging (KLoSA), this study examines how continuity and change of marital status is associated with health over time among older women, focusing on the moderating effects of age and parent-child relationships. KLoSA data set has two waves of interviews, and for this study, 2046 women aged 65 and over were selected. To analyze data, Structural Equation Modeling (SEM) was used. The major findings are as follows. First, there was no statistically significant difference in health between continuously married older women and continuously single older women. However, older women who had transition from being married to being single showed lower physical health than continuously married and continuously single older women. Second, there were statistically significant differences in the effect of marital status on mental health according to the age of older women. Older women who had transition from being married to being single showed lower mental health than continuously married elders when older women were younger. Third, contact with children moderated the effect of marital status on physical health. Older women who had transition from being married to being single showed lower physical health than continuously single and continuously married older women when older women had less contact with their children. The findings imply after the loss of marital role, older women's relationship with adult children plays a significant role in promoting health. In conclusion, the findings of this study show the different pathways through which marital status is associated with health for 3 different groups of older women, being continuously single, being continuously married, and making transition from being married to being single.

  • PDF

Comparison of Thermal Properties and Surface Structures of Unmodified, Spray-Dried, and Extrusion-Dried Agar (일반한천, 분무건조한천, 압출성형한천의 열 특성 및 표면구조의 비교)

  • 김희구;손홍주
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.234-240
    • /
    • 1997
  • Agar has widely been used as medical aids and food ingredients due to its pecular physicochemical and rheological properties. In this paper, the effects of spray drying and extrusion drying on functional properties of agar were investigated to clarify the sol-gel transition mechanism at low temperature and microstructure of agar gel by measuring phase transition by differential scanning calorimetery, structural differences by light microscope and scanning electron microscope observation. The lowest endothermic onset(To), peak(Tp), conclusion(Tc) temperature and enthalpy($\Delta$H) using differential scanning calorimetery were showed in extrusion-dried agar wic were checked in 41.30, 61.72, 80.50 and 0.73cal/g. In cases of unmodified and spray-dried, the values were 81.20, 95.51, 112.14 and 3.22cal/g, and 60.11, 76.45, 89.54 and 1.53cal/g, respectively. When all samples were reheated using differential scanning calorimetery after gelling fully, no significant differences of endothermic To, Tp, Tc and $\Delta$H appeared. The surface structure of unmodified agar powder observed by light microscope and scanning electron microscope appeared a continuous surface without any indication of small pores, gaps or point of discontinuity. In cases of spray-dried agar, the unstable structures with pores was resulted. The microstructures of extrusion-dried agar, however, was solid with large gaps and areas of discontinuity in the surface. From the results above, it was suggested that significant differences in phase transition and surface microstructures were clearly related to the physicochemical changes and rheological properties, solubility and gelling ability of the types of agar gel.

  • PDF

Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow (전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2004
  • This study aims at measuring electrical and rheological properties of cosmetic emulsions on the skin under shear flow. The effects of volume ratio and surfactants on structural changes of emulsions were examined by determining the changes of electrical resistance, viscosity, and morphology. As the ratio of the internal phase increased, the phase inversion occurred more quickly. The viscosity change was found to increase with increasing of the variation of electrical resistance of the emulsions. This phenomenon may be caused by decreased resistant force against the shear flow because of the breakdown of the internal phase. Surfactants a]so played a key ro]e on phase transition of emulsions. It is likely that polymeric surfactants anchoring on the emulsion surface reinforced the interfacial mechanical strength. As the concentration of surfactants increased, the phase transition occurred more slowly. It has been demonstrated that the phase changes of emulsions under shear flow can be monitored on the real-time basis by using a JELLI$\^$TM/ chip system, a combination of conductiometry and rheometry. Our approach is expected to a useful experimental tool for predicting the phase transition of the cosmetic products during skin application.

Growth of ε-Ga2O3 film and fabrication of high quality β-Ga2O3 films by phase transition (ε-Ga2O3 박막의 성장과 상전이를 이용한 고품질 β-Ga2O3 박막의 제조)

  • Lee, Hansol;Kim, Soyoon;Lee, Jungbok;Ahn, Hyungsoo;Kim, Kyounghwa;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • ε-Ga2O3, a metastable phase of Ga2O3, has excellent compatibility with substrates having a hexagonal structure or a quasi-hexagonal structure, so that a film having a relatively lower surface roughness and defect density than β-Ga2O3 can be obtained easily. Accordingly, we attempted to fabricate a high-quality β-Ga2O3 film with a low surface roughness and defect density using the property of phase transition to β-Ga2O3 when ε-Ga2O3 is annealed at a high temperature. For this, the growth of high-quality ε-Ga2O3 films must be preceded. In this study, the optimal flow rate was investigated by analyzing the structural and morphological characteristics of the ε-Ga2O3 film according to the supplied precursor ratio. In addition, the annealing condition and the effect of β-Ga2O3 mixed in the ε-Ga2O3 film on the crystallinity of β-Ga2O3 after phase transition were also investigated.

The Relationship between Peer Communication, Self-Efficacy, Depression, and Satisfaction of Life in School-class Transition period Adolescent (학교급 전환기 청소년의 또래의사소통, 자기효능감, 우울, 삶의 만족도의 관계)

  • 김현주;박소리;김하늬;이효경;손은령
    • The Journal of Learner-Centered Curriculum and Instruction (JLCCI)
    • /
    • v.19 no.6
    • /
    • pp.175-197
    • /
    • 2019
  • This study analyzed the structural relationship between peer communication experienced by ninth and twelfth graders who will undergo school transition, self-efficacy, depression, and life satisfaction. Through this, the study aimed to gain an understanding on ways to improve adolescents' life satisfaction from a life-span developmental perspective. It especially attempted to investigate whether a positive attitude toward oneself and negative emotions play a mediating role in the relationship between peer communication, which can provide environmental support for adolescents, and life satisfaction. To this end, the data of ninth grade (third year, 2012) and twelfth grade (sixth year, 2015) of the 7th Grade Panel of Korean Children and Youth Panel Survey (KCYPS) were used. The key results of study are as follows. First, peer communication, self-efficacy, and depression had a significant effect on life satisfaction directly and indirectly. Second, peer communication affected life satisfaction indirectly by the media of self-efficacy and depression. These findings suggested the importance of self-efficacy and depression in promoting adolescents' healthy and satisfactory lives that lead to adulthood. Also, the study suggested that the environmental background of adolescents in a transition can improve life satisfaction through training and counseling on cognitive and emotional factors.

Structural Characteristics and Physical Properties of Wild Silk Fibres; Antheraea pernyi and Antheraea yamamai (야잠사의 구조특성 및 물리적 성질)

  • 권해용;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.138-146
    • /
    • 1994
  • The structural characteristics of Antheraea yamamai and Antheraea pernyi silk were investigated by using x-ray diffraction method, IR spectroscopy and polarizing microscopy. The amino acid composition, fiber density, thermal decomposition temperature and glass transition temperature were also measured for relating these physical properties to the structure in comparison with those of Bombyx mori silk fiber. There was no significant structural difference between A. yamamai and A. pernyi silk fiber on an examination of x-ray diffraction curve and IR spectrum. Both of these wild silk fibers showed double diffraction peaks at the Bragg angle 2Θ16.7˚ and 20.5˚by x-ray diffraction analysis as well as IR absorption peaks for the bending vibration of specific groups related to ala-ala amino acid sequence. On the other hand, the x-ray diffraction curve and IR spectrum of Bombyx mori silk fiber are different from those of wild silk fibers, indicating different crystal structure as well as amino acid sequences. It showed under the polarizing microscope examination that the birefringence and optical orientation factor of wild silk fibers are much lower than those of B. mori silk. Also, the surface of degummed wild silk fibers was characterized by the longitudinal stripes of microfibrils in the direction of fiber axies. The amino acid composition, which is strongly related to the fine structure and properties, was not significantly different between these two wild silk fibers. However, the alanine content was somewhat less and polar amino acid content more for A. yamamai. As a result of fiber density measurement, the specific gravities of B. mori, A. pernyi and A. yamamai were 1.355~1.356, 1.308~1.311, 1.265~1.301g/㎤ in the order, respectively. The calculated crystallinity(%) was 64% for B. mori and 51~52% for wild silk fibers, which showed same trend by IR method in spite of somewhat higher value. The thermal decomposition behaviour was examined by DSC and TGA, showing that the degradation temperature was in the order of B mori, A. prernyi and A. yamamai at around 350$^{\circ}C$. It was also observed by TGA that the decomposition seems to proceed step by step according to their specific regions in the fiber structure, resulting the difference in their thermal stabilities. The glass transition temperature was turned out to be 220$^{\circ}C$ for B. mori, 240$^{\circ}C$ A. yamamai and 255$^{\circ}C$ A. pernyi by the dynamic mechanical analysis. It is expected that the chemical properties are affected by the dynamic mechanical behavior in accordance with their structural characters.

  • PDF

Amorphous Chalcogenide Solids Doped with Rare-Earth Element : Fluorescence Lifetimes and the Glass Structural Changes (희토류 원소 첨가 비정질 찰코지나이드 : 형광 수명과 유리 구조 변화의 관계)

  • Choi Yong Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.696-702
    • /
    • 2004
  • Lifetime of excited electronic states inside the 4f configuration of rare-earth elements embedded in chalcogenide glasses is very sensitive to medium-range structural changes of the host glasses. We have measured lifetimes of the 1.6$\mu\textrm{m}$ emission originating from Pr$\^$3+/ : ($^3$F$_3$, $^3$F$_4$)\longrightarrow$^3$H$_4$ transition in amorphous chalcogenide samples consisting of Ge, Sb, and Se elements. The measured lifetimes fumed out to have their maximum at the mean coordination number of -2.67, which arises accordingly from structural changes of the host glasses from 2 dimensional layers to 3 dimensional networks. This new finding supports that the so-called topological structure model together with chemically ordered network model is adequate to explain relationship between the emission properties of rare-earth elements and the medium-range structures of amorphous chalcogenide hosts with a large covalent bond nature. Thus, it is validated to predict site distribution and lifetime of rare-earth elements doped in chalcogenide glasses simply based on their mean coordination number.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part IV: Experimental Study on Mechanical Properties at Elevated Temperatures (조선 해양 구조물용 강재의 소성 및 파단 특성 IV: 고온 기계적 물성치에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Park, Ro-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2011
  • This is the fourth of a series of companion papers dealing with the mechanical property reductions of various marine structural steels. Even though a reduction of the elastic modulus according to temperature increases has not been obtained from experiments, high temperature experiments from room temperature to $900^{\circ}C$ revealed that initial the yield strength and tensile strength are both seriously degraded. The mechanical properties obtained from high temperature experiments are compared with those from EC3 (Eurocode 3). It is found that the high temperature test results generally comply with the prediction values by EC3. Based on the prediction of EC3, time domain nonlinear finite element analyses were carried out for a blast wall installed on a real FPSO. After applying the reduced mechanical properties, corresponding to $600^{\circ}C$ to the FE model of the blast wall, more than three times the deflections were observed and it was observed that most structural parts experience plastic deformations exceeding the reduced yield strength at the high temperature. It is noted that a protection facility such as PFP (passive fire protection) should be required for structures likely to be directly exposed to fire and explosion accident.