Variables, x and y are said to have a linear relation if $y={\beta}_0+{\beta}_1\;x$, and ${\beta}_0$ and ${\beta}_1$ are constants. The relationship is called a structural relationship if x has positive variance (i.e., x is not fixed) and only error-prone measurements of x and y can be obtained. This paper derives (to order $n^{+1/2}$) an approximate distribution of the Studentized test statistic for testing hypotheses about the slope parameter, ${\beta}_1$ in a simple linear structural model. A simulation study suggests our approximate distribution is more accurate approximation to the exact distributions of the Studentized statistic than is the limiting distribution.
본 논문에서는 컬러 정지 영상을 대상으로 상반신 인물 영상이 입력되었을 때, 얼굴 영역을 추출하고 검증하는 방법을 제안한다. 본 논문의 얼굴 추출과정은 1단계로 영상 내 피부색 영역을 추출한 다음, 후보 영역들에 대한 공간적 제한조건을 이용하여 1차 얼굴 후보 영역을 결정한다. 2단계에서는 얼굴 구성 요소 중 가장 두드러진 특징으로서 눈 영역을 탐색하고, 눈 영역을 기준으로 한국인의 얼굴에 대한 구조적 통계값을 적용한다. 이로서 얼굴 포함 최소 사각형 후보 영역을 결정한다. 마지막 3단계에서는 영상 내 색상 정보와 공간 정보 그리고 구조적 통계치로부터 결정된 얼굴 후보 영역에 대하여 얼굴 영역의 텍스춰(texture)를 Wavelet Packet Analysis를 이 용해 조사함으로써 얼굴 영역을 확정하게 된다.
본 연구는 인과관계 분석에서 주로 활용되는 SPSS statistic(회귀분석)과 구조방정식모델을 구현하는 프로그램 중 하나인 AMOS 프로그램을 각각 활용하여 동일한 데이터에 대하여 실증분석을 실시하였다. 실증분석 결과, 회귀계수 및 유의확률에서 서로 다른 결과값이 나왔으며, 특히 매개효과 검정에서 귀무가설 기각역 근처의 유의확률값(즉, t값 및 C.R.값의 절대값이 1.96 근처)을 보이는 상황에서 SPSS statistic(회귀분석)에서는 매개효과가 있는 반면, AMOS 프로그램(구조방정식)에서는 매개효과가 없는 것으로 나타났다. 결국, 동일한 데이터임에도 불구하고 어떤 통계프로그램을 활용하느냐에 따라 다른 결과값(특히, 측정오차가 클수록 결과값이 크게 달라짐)이 나올 수 있음을 알 수 있다.
Limiting distributions of Studentized test statistics have been shown for testing the slope parameter in a simple linear structural model. Since the limiting distribution of Studentized one appears to yield inaccurate inference, this paper suggests adjustment of critical value and normalization of the Studentized one. As results, we can have procedures for refined inference based on our approximate distrbution instead of the limiting distribution.
Ghannadpour, Seyyed Saeed;Hezarkhani, Ardeshir;Golmohammadi, Abbas
Geosystem Engineering
/
제21권5호
/
pp.262-272
/
2018
The U-statistic method is one of the most important structural methods to separate the anomaly from background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, 3D U-statistic method has been applied for the first time through the three-dimensional (3D) modeling of an ore deposit. In order to achieve this purpose, 3D U-statistic is applied on the data (Fe grade) resulted from the drilling network in Baghak mine, central part of the Sangan iron mines (in Khorassan Razavi Province, Iran). Afterward, results from applying 3D U-statistic method are used for 3D modeling of the iron mineralization. Results show that the anomalous values are well separated from background so that the determined samples as anomalous are not dispersed and according to their positioning, denser areas of anomalous samples could be considered as anomaly areas. And also, final results (3D model of iron mineralization) show that output model using this method is compatible with designed model for mining operation. Moreover, seen that U-statistic method in addition for separating anomaly from background, could be very efficient for the 3D modeling of different ore type.
Timber structures are susceptible to structural damages caused by variations in moisture content (MC), inducing severe durability deterioration and safety issues. Therefore, it is of great significance to detect MC levels in timber structures. Compared to current methods for timber MC detection, which are time-consuming and require bulky equipment deployment, Lead Zirconate Titanate (PZT)-enabled stress wave sensing combined with statistic machine learning classification proposed in this paper show the advantage of the portable device and ease of operation. First, stress wave signals from different MC cases are excited and received by PZT sensors through active sensing. Subsequently, two non-baseline features are extracted from these stress wave signals. Finally, these features are fed to a statistic machine learning classifier (i.e., naïve Bayesian classification) to achieve MC detection of timber structures. Numerical simulations validate the feasibility of PZT-enabled sensing to perceive MC variations. Tests referring to five MC cases are conducted to verify the effectiveness of the proposed method. Results present high accuracy for timber MC detection, showing a great potential to conduct rapid and long-term monitoring of the MC level of timber structures in future field applications.
대부분의 통계분석방법은 요약통계량에 의존하지만 그래픽적 방법을 이용하면 자료의 특성을 파악하기 쉽고 통계량만으로는 알아낼 수 없는 부분까지도 접근이 가능하다. 그래프를 통한 로지스틱회귀모형의 평가 방법으로 로그-밀도비를 통한 검토, 차원 검토, 주변모형산점도, 카이잔차산점도, CERES 그림을 알아보고 모의자료들을 통해 다양한 상황에서 그래픽적 방법들 어떠한 결과를 나타내지를 비교 검토한다.
Purpose - The purpose of paper is studying the static and dynamic side for long-term memory storage properties, and increase the explanatory power regarding the long-term memory process by looking at the long-term storage attributes, Korea Composite Stock Price Index. The reason for the use of GPH statistic is to derive the modified statistic Korea's stock market, and to research a process of long-term memory. Research design, data, and methodology - Level shifts were subjected to be an empirical analysis by applying the GPH method. It has been modified by taking into account the daily log return of the Korea Composite Stock Price Index a. The Data, used for the stock market to analyze whether deciding the action by the long-term memory process, yield daily stock price index of the Korea Composite Stock Price Index and the rate of return a log. The studies were proceeded with long-term memory and long-term semiparametric method in deriving the long-term memory estimators. Chapter 2 examines the leading research, and Chapter 3 describes the long-term memory processes and estimation methods. GPH statistics induced modifications of statistics and discussed Whittle statistic. Chapter 4 used Korea Composite Stock Price Index to estimate the long-term memory process parameters. Chapter 6 presents the conclusions and implications. Results - If the price of the time series is generated by the abnormal process, it may be located in long-term memory by a time series. However, test results by price fixed GPH method is not followed by long-term memory process or fractional differential process. In the case of the time-series level shift, the present test method for a long-term memory processes has a considerable amount of bias, and there exists a structural change in the stock distribution market. This structural change has implications in level shift. Stratum level shift assays are not considered as shifted strata. They exist distinctly in the stock secondary market as bias, and are presented in the test statistic of non-long-term memory process. It also generates an error as a long-term memory that could lead to false results. Conclusions - Changes in long-term memory characteristics associated with level shift present the following two suggestions. One, if any impact outside is flowed for a long period of time, we can know that the long-term memory processes have characteristic of the average return gradually. When the investor makes an investment, the same reasoning applies to him in the light of the characteristics of the long-term memory. It is suggested that when investors make decisions on investment, it is necessary to consider the characters of the long-term storage in reference with causing investors to increase the uncertainty and potential. The other one is the thing which must be considered variously according to time-series. The research for price-earnings ratio and investment risk should be composed of the long-term memory characters, and it would have more predictability.
본 연구는 인과관계 분석에서 주로 활용되는 SPSS statistics(회귀분석)과 구조방정식모델을 구현하는 프로그램 중 하나인 AMOS 프로그램을 각각 활용하여 동일한 데이터에 대하여 조절효과 검정을 위한 실증분석을 실시하였다. 실증분석 결과, SPSS statistics을 활용한 회귀분석에서 상황변수가 범주형데이터인 성별과 연속형데이터인 컨설팅만족도 모두에서 조절효과가 없는 것으로 나타난 반면, AMOS 프로그램을 활용한 구조방정식모델에서는 10% 유의수준에서 컨설턴트의 능력 및 태도가 컨설팅재구매에 미치는 영향관계를 컨설팅만족도가 부분적으로 조절하고 있는 것으로 나타났다. 결국, 조절효과 분석은 AMOS 프로그램을 활용한 구조방정식모델과 SPSS statistics을 활용한 회귀분석모델이 전혀 다른 접근방법을 사용하고 있어 얼마든지 상이한 결과가 나올 수 있음을 보여준다.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.177-182
/
2012
A structural break in the level as well as in the innovation variance has often been exhibited in economic time series. In this paper we propose robust unit root tests based on a sign-type test statistic when a time series has a shift in its level and the corresponding volatility. The proposed tests are robust to a wide class of partially stationary processes with heavy-tailed errors, and have an exact binomial null distribution. Our tests are not affected by the size or location of the break. We set the structural break under the null and the alternative hypotheses to relieve a possible vagueness in interpreting test results in empirical work. The null hypothesis implies a unit root process with level shifts and the alternative connotes a stationary process with level shifts. The Monte Carlo simulation shows that our tests have stable size than the OLSE based tests.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.