• Title/Summary/Keyword: Structural Solutions

Search Result 1,315, Processing Time 0.024 seconds

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

Boundary Element Method for Multilayered Media Using Numerical Fundamental Solutions (다층 반무한 기본해를 이용한 경계요소해석)

  • 김문겸;오금호;김민규;박준상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.79-86
    • /
    • 1996
  • A boundary element method which utilizes the fundamental solution in the half plane is developed to analyze the multi-layered elastic media. The objective of this study is to derive numerically the fundamental solutions and to apply those to the exterior multi-layered domain problems. To obtain numerical fundamental solutions of multi-layered structural system, the same number of solutions as that of layers in Fourier transform domain are employed. The numerical integration technique is used in order to inverse the Fourier transform solution to real domain. To verify the proposed boundary element method, two examples are treated: (1) a circular hole near the surface of a half plane; and (2) a circular cavity within one layer of four layered half plane.

  • PDF

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

Deducing thick plate solutions from classical thin plate solutions

  • Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • This paper reviews the author's work on the development of relationships between solutions of the Kirchhoff (classical thin) plate theory and the Mindlin (first order shear deformation) thick plate theory. The relationships for deflections, stress-resultants, buckling loads and natural frequencies enable one to obtain the Mindlin plate solutions from the well-known Kirchhoff plate solutions for the same problem without much tedious mathematics. Sample thick plate solutions, deduced from the relationships, are presented as benchmark solutions for researchers to use in checking their numerical thick plate solutions.

The Perception Gap about Conflict Factors and Solutions by Experience of Returning to Farming (귀농·귀촌의 경험 여부에 따른 갈등 요인과 관리에 대한 인식 차이)

  • Lee, Seong-il;Ahn, Min-ji;Kim, Yong-geun
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.77-87
    • /
    • 2016
  • Targeting people returning to farming and also people preparing for returning to farming, this study analyzed differences in awareness of conflict factors and conflict management focusing on the conflicts experiencing in the process of their movement and settlement process in rural area. In the results, people preparing for returning to farming showed higher awareness of conflicts and also higher necessity of conflict management than people already returning to farming. Also, both groups preferred individual conflict management to structural conflict management. Based on the results like above, the implications can be summarized like below. First, it would be necessary to have programs informing possible conflicts in advance in the process of returning to farming and also relieving psychological anxiety by providing prior-learning to people preparing for returning to farming. Second, it would be necessary to have individual conflict management measures to establish mutual trust and to form community spirit through regular social gatherings between original residents and people returning to farming. Since the effect of conflict management can be maximized only when the structural and individual conflict managements are properly harmonized, it would be necessary to have the structural conflict management which is relatively felt difficult.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Benchmark Modal Stress-Resultant Distributions for Vibrating Rectangular Plates with Two Opposite Edges Free

  • Y. Xiang;Wang, C.M.;T. Utsunomiya;C. Machimdamrong
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • This paper presents exact solutions for the modal stress-resultant distributions for vibrating rectangular Mindlin plates involving two opposite sides simply supported while the other two sides free. These exact stress-resultants of vibrating plates with free edges, hitherto unavailable, are very important because they serve as benchmark solutions for checking numerical solutions and methods. Using the exact solutions of a square plate, this paper highlights the problem of determining accurate stress-resultants, especially the transverse shear forces and twisting moments in thin plates, when employing the widely used numerical methods such as the Ritz method and the finite element method. Thus, this study shows that there is a need for researchers to develop refinements to the Ritz method and the finite element method for determining very accurate stress-resultants in vibrating plates with free edges.

  • PDF

Structural Behavior of Underground Subway Structures According to Structural Model (구조 모델링 방법에 따른 지하철 정거장 구조물의 거동)

  • Park Eik-Tae;Lee Hwan-Woo;Kim Kwang-Yang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.3-11
    • /
    • 2005
  • The structural analysis considering the soil-structure interaction is very important in the design process of underground structures located on the site with various soil conditions. In practice, simplified modelling techniques to obtain the approximate solution are used in accordance with the specifications. However, their details are insufficient for practical engineers to obtain the stable solutions and the analysis results of each engineer occasionally my be different in spite of the same problem. In this study, the sensitivity of structural behaviour on the underground structures is analyzed according to the structural modelling techniques of existing specifications. It is performed to obtain the fundamental informations to establish the guide to obtain the stable solutions in practical analysis of the underground structures such as subway structures.

  • PDF

The Use of Bituminous Subballast on Future High-Speed Lines in Spain: Structural Design and Economical Impact

  • Teixeira, P.F.;Ferreira, P.A.;Pita, A. Lopez;Casas, C.;Bachiller, A.
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The development of structural solutions for high-speed or very high-speed tracks that minimize total life cycle costs of the system is a key issue to improve the operational profitability of new investments. In opposition to conventional ballasted tracks, slab track solutions can be a cost-effective solution, but only in the cases where the benefits due to the increase in track availability and the reduction of track maintenance offsets its much higher construction costs. In the cases where such investment is not feasible, it is worth to evaluate possible structural improvements to ballasted track that allow reducing its maintenance needs without increasing too much its construction costs. This paper evaluates the design requirements and the impact of improving conventional high-speed ballasted tracks by using a bituminous subballast layer. It is divided into two main parts: first the design requirements of the structural solutions with bituminous subballast and its possible benefits on high-speed track deterioration, and secondly the evaluation of the economic impact, in terms of construction costs, of using this structural solution material in future Spanish high-speed lines.

  • PDF

Multi-objective optimal design of laminate composite shells and stiffened shells

  • Lakshmi, K.;Rama Mohan Rao, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.771-794
    • /
    • 2012
  • This paper presents a multi-objective evolutionary algorithm for combinatorial optimisation and applied for design optimisation of fiber reinforced composite structures. The proposed algorithm closely follows the implementation of Pareto Archive Evolutionary strategy (PAES) proposed in the literature. The modifications suggested include a customized neighbourhood search algorithm in place of mutation operator to improve intensification mechanism and a cross over operator to improve diversification mechanism. Further, an external archive is maintained to collect the historical Pareto optimal solutions. The design constraints are handled in this paper by treating them as additional objectives. Numerical studies have been carried out by solving a hybrid fiber reinforced laminate composite cylindrical shell, stiffened composite cylindrical shell and pressure vessel with varied number of design objectives. The studies presented in this paper clearly indicate that well spread Pareto optimal solutions can be obtained employing the proposed algorithm.