• Title/Summary/Keyword: Structural Nonlinearity

Search Result 430, Processing Time 0.026 seconds

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.

Design Optimization of a Compressor Loop Pipe using Response Surface Method (반응표면법을 이용한 압축기 루프 파이프의 최적 설계)

  • 강정환;박종찬;김좌일;왕세명;정충민
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.404-409
    • /
    • 2004
  • A compressor loop pipe is the most important part in a refrigerator from the view of structural vibration and noise. Vibration energy generated from a compressor's inner body is transmitted to the shell and outside through the loop pipe. For this reason it is very important to design a compressor loop pipe. But, for geometrical complexity and dynamic nonlinearity of the loop pipe, analysis and design of the loop pipe is very difficult. So the statistical and experimental methods have to be used for design of this system. The response surface method (RSM) becomes a popular meta-modeling technique f3r the complex system as this loop pipe. As starting point of loop pile's optimization, FEA model and simple experimental model are used instead of the real loop pipe model. After RS model was constructed, using sensitivity-based optimizer performed optimization for the loop pipe. And the moving least square method (MLSM) was applied to reduce the approximation error.

  • PDF

A study on the Accurate Comparison of Nonlinear Solution Which Used Tangent Stiffness Equation and Nonlinear Stiffness Equation (접선 강성방정식과 비선형 강성방정식을 이용한 비선형 해의 정확성 비교에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.95-103
    • /
    • 2010
  • This paper study on the accuracy improvement of nonlinear stiffness equation. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure is accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. Accuracy of nonlinear stiffness equation must improve to examine structure instability. In this study, space truss is analysis model Among tangent stiffness equation and nonlinear stiffness equation is using nonlinearity analysis program. The study compares an analysis result to investigate accuracy and convergence properties improvement of nonlinear stiffness equation.

  • PDF

A geometrically nonlinear thick plate bending element based on mixed formulation and discrete collocation constraints

  • Abdalla, J.A.;Ibrahim, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.725-739
    • /
    • 2007
  • In recent years there are many plate bending elements that emerged for solving both thin and thick plates. The main features of these elements are that they are based on mix formulation interpolation with discrete collocation constraints. These elements passed the patch test for mix formulation and performed well for linear analysis of thin and thick plates. In this paper a member of this family of elements, namely, the Discrete Reissner-Mindlin (DRM) is further extended and developed to analyze both thin and thick plates with geometric nonlinearity. The Von K$\acute{a}$rm$\acute{a}$n's large displacement plate theory based on Lagrangian coordinate system is used. The Hu-Washizu variational principle is employed to formulate the stiffness matrix of the geometrically Nonlinear Discrete Reissner-Mindlin (NDRM). An iterative-incremental procedure is implemented to solve the nonlinear equations. The element is then tested for plates with simply supported and clamped edges under uniformly distributed transverse loads. The results obtained using the geometrically NDRM element is then compared with the results of available analytical solutions. It has been observed that the NDRM results agreed well with the analytical solutions results. Therefore, it is concluded that the NDRM element is both reliable and efficient in analyzing thin and thick plates with geometric non-linearity.

A study on application of high strength steel SM570 in bridge piers with stiffened box section under cyclic loading

  • Kang, Lan;Suzuki, Motoya;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • Although a lot of experimental and analytical investigations have been carried out for steel bridge piers made of SS400 and SM490, the formulas available for SS400 and SM490 are not suitable for evaluating ultimate load and deformation capacities of steel bridge piers made of high strength steel (HSS) SM570. The effect of various parameters is investigated in this paper, including plate width-to-thickness ratio, column slenderness ratio and axial compression force ratio, on the ultimate load and deformation capacities of steel bridge box piers made of SM570 steel subjected to cyclic loading. The elasto-plastic behavior of the steel bridge piers under cyclic loads is simulated through plastic large deformation finite element analysis, in which a modified two-surface model (M2SM) including cyclic hardening is employed to trace the material nonlinearity. An extensive parametric study is conducted to study the influences of structural parameters on the ultimate load and deformation capacities. Based on these analytical investigations, new formulas for predicting ultimate load and deformation capacities of steel bridge piers made of SM570 are proposed. This study extends the ultimate load and deformation capacities evaluation of steel bridge piers from SS400, SM490 steels to SM570 steel, and provides some useful suggestions.

Nonlinear free vibration of FG-CNT reinforced composite plates

  • Mirzaei, Mostafa;Kiani, Yaser
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.381-390
    • /
    • 2017
  • Present paper deals with the large amplitude flexural vibration of carbon nanotube reinforced composite (CNTRC) plates. Distribution of CNTs as reinforcements may be uniform or functionally graded (FG). The equivalent material properties of the composite media are obtained according to a refined rule of mixtures which contains efficiency parameters. To account for the large deformations, von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity is included into the formulation. The matrix representation of the governing equations is obtained according to the Ritz method where the basic shape functions are written in terms of the Chebyshev polynomials. Time dependency of the problem is eliminated by means of the Galerkin method and the resulting nonlinear eigenvalue problem is solved employing a direct displacement control approach. Results are obtained for completely clamped and completely simply supported plates. Results are first validated for the especial cases of FG-CNTRC and cross-ply laminated plates. Afterwards, parametric studies are given for FG-CNTRC plates with different boundary conditions. It is shown that, nonlinear frequencies are highly dependent to the volume fraction and dispersion profiles of CNTs. Furthermore, mode redistribution is observed in both simply supported and clamped FG-CNTRC plates.

A Study on the Nonlinear Stress-Deformation Analysis and Design of Unity-typed Pneumatic Structures Under the Design Load (단일공기막 구조물의 설계하중에 따른 비선형 응력-변형 해석 및 설계에 관한 연구)

  • Shon, Su-Deok;Jeong, Eul-Seok;Kim, Seung-Deog
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.2 s.16
    • /
    • pp.47-55
    • /
    • 2005
  • The method to form the space of the pneumatic structures by internal pressure is classified greatly as the dual type with the nlty type. The shape of the pneumatic structures consists of the curved surface under uniform tension not greatly to be deformed by the design load and stress must not be concentrated also. Therefore, In this study, we have done the structural analysis of the unity typed pneumatic structures by the NASS which is the program for nonlinear analysis. The analytic model is a rectangular pneumatic membrane structures which have four side fixed edges. And we have done the nonlinear incremental analysis considering the orthotropic material.

  • PDF

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.