• Title/Summary/Keyword: Structural Measurement Matrix

Search Result 69, Processing Time 0.024 seconds

광섬유 브래그 격자 센서를 이용한 복합재 구조물의 변형률 및 파손신호 동시 측정 (Simultaneous Measurement of Strain and Damage Signal in Composite Structures Using a Fiber Bragg Grating Sensor)

  • 고종인;방형준;김천곤;홍창선
    • 한국항공우주학회지
    • /
    • 제32권7호
    • /
    • pp.43-50
    • /
    • 2004
  • 변형률과 파손선호를 동시에 계측하기 위하여 이중복조기를 갖는 광섬유 브래그 격자 센서시스템을 제안하였다. 이중복조기는 가변 패브리-페로 필터를 사용하여 변형률과 같이 변화가 큰 저주파신호를 측정하는 복조기와 수동 마흐 -젠더 간섭계를 사용하여 충격이나 파손신호와 같이 미세한 크기의 고주파 신호를 측정하는 복조기로 구성된다. 제안된 광섬유 브래그 격자 센서시스템을 이용하여 인장하중을 받는 직교적층 복합재 구조물의 변형률과 파손신호를 동시에 계측할 수 있었다. 하나의 광섬유 브래그 격자 센서로 측정한 변형률과 파손신호를 분석한 결과, 복합재 시편의 90도 층에서 기지 균열이 발생할 때 급격한 변형률 변이가 유발되고, 최대 수백 킬로헤르츠에 이르는 주파수 성분을 가진 진동신 호가 발생함을 알 수 있었다.

역해석기법을 이용한 복합재료 구성성분의 열팽창계수 예측 (Evaluation of the Coefficient of Thermal Expansion of Constituents in Composite Materials using an Inverse Analysis Scheme)

  • 임재혁;손동우
    • 한국전산구조공학회논문집
    • /
    • 제27권5호
    • /
    • pp.393-401
    • /
    • 2014
  • 복합재료 구성성분은 수 마이크로미터 수준의 크기를 가지고 있으므로 시험을 통한 정확한 물성 측정이 매우 어렵다. 그러므로 본 논문에서는 역해석을 이용하여 복합재료 구성성분의 열팽창계수를 예측할 수 있는 기법을 제안한다. 복합재료에 대한 등가 열팽창계수를 예측할 수 있는 Mori-Tanaka 기법과 결합된 역해석기법을 이용하면, 라미나 수준의 목적함수를 최소화함으로써 구성성분의 열팽창계수를 효율적으로 구할 수 있다. 본 연구에서 제안한 기법을 검증하기 위하여 다양한 섬유(glass fiber, P75, P100, M55J)에 대한 열팽창계수를 예측하고 이를 시험결과와 비교하였다. 또한 라미나와 기지 물성치에 대한 불확실성이 섬유 물성치 예측에 미치는 영향을 분석하였다.

GaAs 나노입자 크기에 따른 SiO2 혼합박막의 구조적 광학적 특성 (The Structural and Optical Properties of GaAs- SiO2 Composite Thin Films With Varying GaAs Nano-particle Size)

  • 이성훈;김원목;신동욱;조성훈;정병기;이택성;이경석
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.296-303
    • /
    • 2002
  • For potential application to quantum mechanical devices, nano-composite thin films, consisting of GaAs quantum dots dispersed in SiO$_2$ glass matrix, were fabricated and studied in terms of structural, chemical, and optical properties. In order to form crystalline GaAs quantum dots at room temperature, uniformly dispersed in $SiO_2$matrix, the composite films were made to consist of alternating layers of GaAs and $SiO_2$in the manner of a superlattice using RF magnetron sputter deposition. Among different film samples, nominal thickness of an individual GaAs layer was varied with a total GaAs volume fraction fixed. From images of High Resolution Transmission Electron Microscopy (HRTEM), the formation of GaAs quantum dots on SiO$_2$was shown to depend on GaAs nominal thickness. GaAs deposits were crystalline and GaAs compound-like chemically according to HRTEM and XPS analysis, respectively. From measurement of optical absorbance using a spectrophotometer, absorption edges were determined and compared among composite films of varying GaAs nominal thicknesses. A progressively larger shift of absorption edge was noticed toward a blue wavelength with decreasing GaAs nominal thickness, i.e. quantum dots size. Band gaps of the composite films were also determined from Tauc plots as well as from PL measurements, displaying a linear decrease with increasing GaAs nominal thickness.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Spurious mode distinguish by eigensystem realization algorithm with improved stabilization diagram

  • Qu, Chun-Xu;Yi, Ting-Hua;Yang, Xiao-Mei;Li, Hong-Nan
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.743-750
    • /
    • 2017
  • Modal parameter identification plays a key role in the structural health monitoring (SHM) for civil engineering. Eigensystem realization algorithm (ERA) is one of the most popular identification methods. However, the complex environment around civil structures can introduce the noises into the measurement from SHM system. The spurious modes would be generated due to the noises during ERA process, which are usually ignored and be recognized as physical modes. This paper proposes an improved stabilization diagram method in ERA to distinguish the spurious modes. First, it is proved that the ERA can be performed by any two Hankel matrices with one time step shift. The effect of noises on the eigenvalues of structure is illustrated when the choice of two Hankel matrices with one time step shift is different. Then, a moving data diagram is proposed to combine the traditional stabilization diagram to form the improved stabilization diagram method. The moving data diagram shows the mode variation along the different choice of Hankel matrices, which indicates whether the mode is spurious or not. The traditional stabilization diagram helps to determine the concerned truncated order before moving data diagram is implemented. Finally, the proposed method is proved through a numerical example. The results show that the proposed method can distinguish the spurious modes.

SSA-based stochastic subspace identification of structures from output-only vibration measurements

  • Loh, Chin-Hsiung;Liu, Yi-Cheng;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.331-351
    • /
    • 2012
  • In this study an output-only system identification technique for civil structures under ambient vibrations is carried out, mainly focused on using the Stochastic Subspace Identification (SSI) based algorithms. A newly developed signal processing technique, called Singular Spectrum Analysis (SSA), capable to smooth a noisy signal, is adopted for preprocessing the measurement data. An SSA-based SSI algorithm with the aim of finding accurate and true modal parameters is developed through stabilization diagram which is constructed by plotting the identified system poles with increasing the size of data matrix. First, comparative study between different approaches, with and without using SSA to pre-process the data, on determining the model order and selecting the true system poles is examined in this study through numerical simulation. Finally, application of the proposed system identification task to the real large scale structure: Canton Tower, a benchmark problem for structural health monitoring of high-rise slender structures, using SSA-based SSI algorithm is carried out to extract the dynamic characteristics of the tower from output-only measurements.

공분산구조분석을 이용한 자체충족률 모형 검증 (Formulating Regional Relevance Index through Covariance Structure Modeling)

  • 장혜정;김창엽
    • 보건행정학회지
    • /
    • 제11권2호
    • /
    • pp.123-140
    • /
    • 2001
  • Hypotheses In health services research are becoming increasingly more complex and specific. As a result, health services research studies often include multiple independent, intervening, and dependent variables in a single hypothesis. Nevertheless, the statistical models adopted by health services researchers have failed to keep pace with the increasing complexity and specificity of hypotheses and research designs. This article introduces a statistical model well suited for complex and specific hypotheses tests in health services research studies. The covariance structure modeling(CSM) methodology is especially applied to regional relevance indices(RIs) to assess the impact of health resources and healthcare utilization. Data on secondary statistics and health insurance claims were collected by each catchment area. The model for RI was justified by direct and indirect effects of three latent variables measured by seven observed variables, using ten structural equations. The resulting structural model revealed significant direct effects of the structure of health resources but indirect effects of the quantity on RIs, and explained 82% of correlation matrix of measurement variables. Two variables, the number of beds and the portion of specialists among medical doctors, became to have significant effects on RIs by being analyzed using the CSM methodology, while they were insignificant in the regression model. Recommendations for the CSM methodology on health service research data are provided.

  • PDF

Monitoring of tall slender structures by GPS measurements

  • Chmielewski, Tadeusz;Breuer, Peter;Gorski, Piotr;Konopka, Eduard
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.401-412
    • /
    • 2009
  • A method is applied for the estimation of structural damage of tall slender structures using natural frequency and displacements measurements by GPS. The relationship between the variation in the global stiffness matrix (or in the stiffness of each finite element) and the change in the natural frequencies of the structure is given. In engineering practice the number of frequencies which can be derived by GPS measurement of long-period structures will be equal to one, two or three first natural frequencies. This allows us in initial studies to detect damage with frequency changes based on forward methods in which the measured frequencies are compared with the predicted analytical data. This idea, of health monitoring from possible changes to natural frequencies, or from a statement of excessive displacements is applied to the Stuttgart TV Tower.

강인 칼만필터를 이용한 유도탄 기체 진동 주파수 추정기 설계 (Direct Missile Bending Frequency Estimation using the Robust Kalman Filter)

  • 나원상;황익호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2477-2479
    • /
    • 2005
  • A robust bending frequency tracker is proposed to design the adaptive notch filter which removes the time-varying missile structural modes from the sensor measurements. To do this, the state-space form of a bending frequency model is derived under the assumption that the bending signal could be described as the lightly damped sinusoid. Since the resultant bending frequency model contains the parametric uncertainties in the measurement matrix, the design problem of bending frequency tracker is tackled by applying the robust Kalman filter to the model. This technique could be easily expanded to the multiple frequencies case because it newly illuminates the bending frequency tracking problem in view of general state estimation.

  • PDF

BaTio3 조성비 변화에 따른 청자소지물질의 특성 (The Characteristics of the Chungja Celadon the Amount of BaTio3)

  • 윤미영;김연중;임헌자
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.31-36
    • /
    • 2012
  • In order to improve the mechanical roperties of the Gangjin celadon $BaTiO_3$ was added into the raw materials of celadon matrix. Through SEM and XRD analysis the structural changes were observed and the hardness values were measured. We could confirm that the mechanical strength considerably increased in the $BaTiO_3$ added celadon through the measurement of hardness values. The increase of mechanical strength values in the celadon may result from the compositional change in the microstructure such as grain boundary area through EDAX analysis. We might suggest a fundamental idea to improve the mechanical intensity of the celadon.