• Title/Summary/Keyword: Structural MRI

Search Result 111, Processing Time 0.031 seconds

Neuropsychiatric Evaluation of Head-Injured Patients(I) : Comparison of Structural and Functional Brain Studies in Post-Traumatic Organic Mental Disorder (두부외상 환자의 신경정신의학적 평가(I) : 외상후 기질성정신장애 환자에서 뇌의 구조적 및 기능적 검사소견의 비교)

  • Yi, Jang Ho;Chang, Hwan-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 1996
  • The Evaluation of patients complaining of psychiatric symptoms following head injury is much affected by the results of various tests. The objecive of this paper is to investigate the effectiveness of each lest by comparing the structual and fuctional brain studies. The subjects were 93 organic menial disorder in and out patients at the Dept. of Neuropsychiatry of the Kyung Hee University Hospital. After carrying out MRI, CT, SPECT, EEG, the results of each were analysed for the sesitivity and ability to detect focal lesion. The degree of inter-test correlations of lest results were also investigated. Furthermore, the characteristic features of psychological tests were studied and the relationship between each of above mentioned tests and psychological test was examined. As for the test sensitivity to diagnosis, the SPECT was the most superior followed by MRI, CT, EEG in thai order. In the case of abnormality, SPECT ranked 1st in detection of focal lesion, followed by MRI, CT in that order. In the inter-test result correlation, the correlation of SPECT-MRI was statistically significant. When mare than moderate abnormality EEG finding was reported, it correlated significantly with that of MRI findings. In the MMPI, the average scores on F, Hs, D, Hy, Pa, Pt, Sc subscales were above 60. Abnormal SPECT group scored significantly high on the F, Pd, Pa, Sc, Ma scales and therefore in comparison ot the SPECT normal group, displayed more psychotic features. In K-WAIS, the mean full scale IQ was down to 77. 23(Verbal IQ : 78.76, Performance IQ : 77.44) but there was no characterogic significant relationship between the lowered to and abnormal SPECT, MRI, CT and EEG results. In conclusion, 1) The SPECT was mast superior in sensitivity and detection of focal lesions. In comparision with other tests, the results of SPECT correlated well with MRI had thus is thought to be very usefull testing method in the evaluation of organic mental disorder patients. 2) The MRI had relatively high sensitivity, ability to detect focal lesion and superior correlation with other test. 3) Although EEG fared less an sensitivity in comparison to other tests, the results of above moderate abnormal grade group and that of MRI correlated significantly. 4) In the MMPI highly scored in F, Hs, D, Hy, Pa, Pt, Sc subscales and abnormal SPECT patients were shown to display more sever psychotic features. There was no significant character relationship between the lowered IQ(in K-WAIS) and abnormal findings on MRI, CT, SPECT, EEG.

  • PDF

Statistical methods for modelling functional neuro-connectivity (뇌기능 연결성 모델링을 위한 통계적 방법)

  • Kim, Sung-Ho;Park, Chang-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1129-1145
    • /
    • 2016
  • Functional neuro-connectivity is one of the main issues in brain science in the sense that it is closely related to neurodynamics in the brain. In the paper, we choose fMRI as a main form of response data to brain activity due to its high resolution. We review methods for analyzing functional neuro-connectivity assuming that measurements are made on physiological responses to neuron activation. This means that we deal with a state-space and measurement model, where the state-space model is assumed to represent neurodynamics. Analysis methods and their interpretation should vary subject to what was measured. We included analysis results of real fMRI data by applying a high-dimensional autoregressive model, which indicated that different neurodynamics were required for solving different types of geometric problems.

Structural and Functional Changes of Hippocampus in Long Life Experienced Taxi Driver (오랜 운전경험을 가진 택시운전기사들의 해마의 구조와 기능적 변화에 대한 MRI연구)

  • You, Myung-Won;Lee, Dong-Kyun;Lee, Jong-Min;Kim, Sun-Mi;Ryu, Chang-Woo;Kim, Eui-Jong;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.124-135
    • /
    • 2012
  • Purpose : The objective of this study was to investigate the differences of hippocampal volume and shape as well as the functional change between long life experienced taxi drivers and controls of Korean population. Materials and Methods: Three-dimensional T1-weighted images and blood oxygen level dependent functional MRI(fMRI) were obtained from 8 subjects, consisting of 4 experienced (20-30 years) taxi drivers and 4 age-matched controls. The hippocampal volume and shape were analyzed with three-dimensional T1-weighted images. In addition, neuronal activities of brain were analyzed using a blood oxygen level dependent fMRI between the two groups. Results: The hippocampal volume showed no statistically significant difference between the two groups (p > 0.05). The left hippocampi of the taxi drivers were slightly elongated with larger head and tail portions than those of the controls (p < 0.05, uncorrected). For the functional MRI, fusiform gyrus was specifically activated in taxi drivers, compared with the control group. Conclusion: The structural and functional changes of taxi driver's hippocampus indicate the functional differentiation as a result of occupational dependence on spatial navigation. In other words, the continuous usage of spatial navigation performance may diminish degeneration of hippocampus and the related brain regions.

Analytical Methods for the Analysis of Structural Connectivity in the Mouse Brain (마우스 뇌의 구조적 연결성 분석을 위한 분석 방법)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.507-518
    • /
    • 2021
  • Magnetic resonance imaging (MRI) is a key technology that has been seeing increasing use in studying the structural and functional innerworkings of the brain. Analyzing the variability of brain connectome through tractography analysis has been used to increase our understanding of disease pathology in humans. However, there lacks standardization of analysis methods for small animals such as mice, and lacks scientific consensus in regard to accurate preprocessing strategies and atlas-based neuroinformatics for images. In addition, it is difficult to acquire high resolution images for mice due to how significantly smaller a mouse brain is compared to that of humans. In this study, we present an Allen Mouse Brain Atlas-based image data analysis pipeline for structural connectivity analysis involving structural region segmentation using mouse brain structural images and diffusion tensor images. Each analysis method enabled the analysis of mouse brain image data using reliable software that has already been verified with human and mouse image data. In addition, the pipeline presented in this study is optimized for users to efficiently process data by organizing functions necessary for mouse tractography among complex analysis processes and various functions.

Changes in Academic Motivation, Learning Strategy Use, and Test Scores by Private Tutoring Hours (사교육 시간에 따른 학습동기, 학습전략 사용 및 학업성취도의 변화)

  • Yoonkyung Chung ;Minhye Lee ;Yeon-kyoung Woo ;Mimi Bong ;Sung-il Kim
    • Korean Journal of Culture and Social Issue
    • /
    • v.16 no.2
    • /
    • pp.103-124
    • /
    • 2010
  • The purpose of the present study was to examine the relationships among private tutoring hours, academic motivation, use of learning strategies, and academic achievement test scores using structural equation modeling. The sample consisted of 3,607 7th graders from Korean middle schools who were included in the Korean Education Longitudinal Study. The results suggest that there was no evidence that the private tutoring hours predicted students' motivation and learning strategy use. It was found that the private tutoring hours predicted achievements in English and Math, but it was negligible in magnitude. As for achievement test scores, academic motivation and the use of learning strategies played more critical role rather than the private tutoring hours.

  • PDF

A Review of Brain Magnetic Resonance Imaging Correlates of Successful Cognitive Aging (뇌자기공명영상의 노화에 따른 변화)

  • Ji, Eun-Kyung;Chung, In-Won;Youn, Tak
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Normal aging causes changes in the brain volume, connection, function and cognition. The brain changes with increases in age and difference of gender varies at all levels. Studies about normal brain aging using various brain magnetic resonance imaging (MRI) variables such as gray and white matter structural imaging, proton spectroscopy, apparent diffusion coefficient, diffusion tensor imaging and functional MRI are reviewed. Total volume of brain increases after birth but decreases after 9 years old. During adulthood, total volume of brain is relatively stable. After 35 years old, brain shrinks gradually. The changes of gray and white matters by aging show different features. N-acetylaspartate decreases or remains unchanged but choline, creatine and myo-inositol increase with aging. Apparent diffusion coefficient decreases till 20 years old and then becomes stable during adulthood and increase after 60 years old. Diffusion tensor properties in white matter tissue are variable during aging. Resting-state functional connectivity decreases after middle age. Structural and functional brain changes with normal aging are important for studying various psychiatric diseases such as dementia, schizophrenia and bipolar disorder. Our review may be helpful for studying longitudinal changes of these diseases and successful aging.

Muscular Adaptations and Novel Magnetic Resonance Characterizations of Spinal Cord Injury

  • Lim, Woo-Taek
    • Physical Therapy Korea
    • /
    • v.22 no.2
    • /
    • pp.70-80
    • /
    • 2015
  • The spinal cord is highly complex, consisting of a specialized neural network that comprised both neuronal and non-neuronal cells. Any kind of injury and/or insult to the spinal cord leads to a series of damaging events resulting in motor and/or sensory deficits below the level of injury. As a result, muscle paralysis (or paresis) leading to muscle atrophy or shrinking of the muscle along with changes in muscle fiber type, and contractile properties have been observed. Traditionally, histology had been used as a gold standard to characterize spinal cord injury (SCI)-induced adaptation in spinal cord and skeletal muscle. However, histology measurements is invasive and cannot be used for longitudinal analysis. Therefore, the use of conventional magnetic resonance imaging (MRI) is promoted to be used as an alternative non-invasive method, which allows the repeated measurements over time and secures the safety against radiation by using radiofrequency pulse. Currently, many of pathological changes and adaptations occurring after SCI can be measured by MRI methods, specifically 3-dimensional MRI with the advanced diffusion tensor imaging technique. Both techniques have shown to be sensitive in measuring morphological and structural changes in skeletal muscle and the spinal cord.

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

Clinical Application of $^{18}F-FDG$ PET in Epilepsy (간질에서의 $^{18}F-FDG$ PET의 임상 이용)

  • Kim, Yu-Kyeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.172-176
    • /
    • 2008
  • FDG PET has been used as a diagnostic tool for localization of seizure focus for last 2-3 decades. In this article, the clinical usefulness of FDG PET in the management of patients with epilepsy has been reviewed, which provided the evidences to justify the medicare reimbursement for FDG PET in management of patients with epilepsy. Literature review demonstrated that FDG PET provides an important information in localization of seizure focus and determination whether a patients is a surgical candidate or not. FDG PET has been reported to have high diagnostic performance in localization of seizure focus in neocortical epilepsy as well as temporal lobe epilepsy regardless of the presence of structural lesion on MRI. Particularly, FDG PET can provide the additional information when the results from standard diagnositic modality such as interictal or video-monitored EEG, and MRI are inconclusive or discordant, and make to avoid invasive study. Furthermore, the presence of hypometabolism and extent of metabolic extent has been reported as an important predictor for seizure free outcome. However, studies suggested that more accurate localization and better surgical outcome could be expected with multimodal approach by combination of EEG, MRI, and functional studies using FDG PET or perfusion SPECT rather than using a single diagnostic modality in management of patients with epilepsy. Complementary use of FDG PET in management of epilepsy is worth for good surgical outcome in epilepsy patients.

Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on MR Images

  • Madusanka, Nuwan;Choi, Yu Yong;Choi, Kyu Yeong;Lee, Kun Ho;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The brain magnetic resonance images (MRI) is an important imaging biomarker in Alzheimer's disease (AD) as the cerebral atrophy has been shown to strongly associate with cognitive symptoms. The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlates with the decline of cognitive functions in neurodegenerative diseases. During the past decades several methods have been developed for quantifying the disease related atrophy of hippocampus from MRI. Special effort has been dedicated to separate AD and mild cognitive impairment (MCI) related modifications from normal aging for the purpose of early detection and prediction. We trained a multi-class support vector machine (SVM) with probabilistic outputs on a sample (n = 58) of 20 normal controls (NC), 19 individuals with MCI, and 19 individuals with AD. The model was then applied to the cross-validation of same data set which no labels were known and the predictions. This study presents data on the association between MRI quantitative parameters of hippocampus and its quantitative structural changes examination use on the classification of the diseases.