• Title/Summary/Keyword: Structural Improvement

Search Result 1,860, Processing Time 0.031 seconds

A Study on Remodeling for Building Performance Improvement (건물성능개선을 위한 리모델링에 관한 연구)

  • 김남효
    • Korean Institute of Interior Design Journal
    • /
    • no.25
    • /
    • pp.42-48
    • /
    • 2000
  • The building remodeling is providing a lot of solutions - structural, aesthetic, environmental, and energy performance improvement - in improving buildings performance and environment. The remodelings influences on our society are resource conservation, environmental conservation, expansion of construction market, and creation of new employment. The three principal remodeler groups involved in this building remodeling are general construction contractors, interior architecture contractors, and ESCO (Energy Service Company). Having a representative character, this study classifies remodeling methods into five types: structural remodeling, spatial remodeling, exterior remodeling, environment-friendly remodeling, and ecological remodeling.

  • PDF

Toward Efficacy Improvement in a PDP Discharge Cell from Structural Considerations

  • Tachibana, Kunihide
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.20-23
    • /
    • 2009
  • The efficacy improvement issues in a unit discharge cell have been approached from the structural considerations. The tested cell designs include (a) a coplanar type with annular auxiliary electrode buried in barrier ribs, (b) a coplanar type with split auxiliary electrodes also burred in barrier ribs and (c) a coaxial type with a floating electrode stacked on the base electrode. From spatiotemporally resolved optical images of near-IR emission taken by a gated-ICCD camera and relative VUV emission intensity estimated by laser absorption spectroscopy, the differences in the discharge and light emission performances of those three cell types have been compared and discussed.

  • PDF

Experimental Evaluation of Deployment Time of Active Hood Lift System According to Structural Improvement (능동후드리프트 시스템의 구조 설계에 따른 전개시간의 실험적 평가)

  • Lee, Tae-Hoon;Yoon, Gun-Ha;Park, Chun-Yong;Kang, Je-Won;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2016
  • In this research, the performances of active hood lift system(AHLS) are investigated according to the structural improvement through the experimental test. After introducing the working principle of the AHLS activated by a gunpowder actuator, the structural problems that cause the inefficiencies in the actuation are analyzed to reduce the deployment time of system. Sequentially, the improved structural model is proposed base on the analysis. The deployment time of AHLS are evaluated by the experimental test, and it has been identified that the improved model can provide a faster deploying time of AHLS.

Structural Improvement of the Shading Structures against Meteorological Disasters in Ginseng Fields (인삼재배 해가림시설의 기상재해와 구조개선대책)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.98-106
    • /
    • 2003
  • In order to set up structural improvement strategy against meteorological disasters of the shading structures in ginseng fields, structural safety analyses as well as some case studies of structural damage patterns were carried out. According to the results of structural safety analysis, allowable safe snow depth for type B(wood frame with single span) was 25.9 cm, and those for type A(wood frame with multi span) and type C and D (steel frame with multi span) were 17.6 cm, 25.8 cm, and 20.0 cm respectively. So types of shading structures should be selected according to the regional design snow depth. An experiential example study on meteorological disasters indicated that a strong wind damage was experienced once every 20 years, and a heavy snow damage once every 9.5 years. The most serious disasters were caused by heavy snow and it was found that a half break and complete collapse of structures were experienced by about 70% of snow damage. In addition to maintenance, repair and reinforcement, it is also recommended that improved model of shading structures for ginseng cultivation should be developed as a long term countermeasures against meteorological disasters.

A Survey of Korean Firefighters Regarding their Satisfaction with Protective Clothing (한국 소방용 방화복에 대한 만족도 조사)

  • Han, Sul-Ah;Nam, Yun-Ja;Choi, Young-Lim
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.9
    • /
    • pp.166-175
    • /
    • 2008
  • For the structural firefighting protective clothing, it can show a synergy effect when it satisfies smart fabric to block off a harmful environmental element and ergonomics design that apply range of motion of human body and appropriate size system. There are various standards about the structural firefighting protective clothing, but it's difficult to find a rule about movement suitability because the performance of the material holds a lot of the rules. Therefore, the purpose of this study is to propose a scheme to evaluate the current structural firefighting protective clothing and to improve movement suitability by research on the actual condition. For this, the survey about wearer acceptability scale on design and size and about improvement requirements was executed gathering firefighters' opinion. Questionnaire was composed with 23 items about satisfaction on current structural firefighting protective clothing, body suitability, movement suitability, improvement requirement and subjective information. As a results, Korean firefighters demand ergonomics design of structural firefighting protective clothing which to minimize restriction of body movement and to maximize body suitability.

Bond Characteristics of Structural Synthetic Fibers (구조용 합성섬유 표면형상에 따른 부착특성)

  • 원종필;임동휘;박찬기;한일영;김방래
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.335-340
    • /
    • 2001
  • Recently in abroad, structural synthetic fiber developed, has been studied extensively as a substitute for steel fiber due to its properties such as corrosion-resistance, low density, good pumping, and in-place safety, etc. In this study, we conducted pull-out test, for seven different geometries of structural synthetic fibers and obtained optimum geometry for structural synthetic fiber which fully utilizes matrix anchoring without revealing fiber fracturing. According to pull-out test results, it was found that crimped type structural synthetic fiber give significant improvement in the interface toughness(roll-out enemy) and pull-out load.

  • PDF

Durability of Concrete Using Insulation Performance Improvement Materials (단열성능 향상 재료를 사용한 콘크리트의 내구성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kim, Se-Hwan;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, we tested to develop and apply structural insulation performance improvement concrete to field, which had compressive strength in 24 MPa and thermal conductivity twice as much as normal concrete. After experiment about slump and air contents, combination product of Plain and calcined diatomite powder showed reduction of slump and air contents and combination product with micro foam cell admixture, we cannot find result of slump and air contents reduction. Unit weight of combination product with insulation performance improvement materials decreased more than that of Plain. In the test of compressive strength, compressive strength of insulation performance improvement concrete decreased more than that of Plain but was content with 24 MPa. thermal conductivity of insulation performance improvement concrete tended to decrease. Freezing and thawing resistance of insulation performance improvement concrete was similar to that of Plain. In carbonation resistance test, combination product with calcined diatomite powder showed the result which was similar to that of Plain. In carbonation resistance test, combination product with micro foam cell admixture showed a increase compared to that of Plain and length variation of combination product generally increased.

Design Improvement of Front-End Loader for Tractor to Reduce Stress Concentration and Evaluation of Impact Safety (응력집중 저감을 위한 트랙터용 프론트 로더의 설계개선 및 충격 안전성 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of the front-end loader for the 90 kW class of agricultural tractors in impact test conditions. Deformation and stress on the loader under the impact test conditions are analyzed using the commercial finite element analysis software ANSYS. In previous research dealing with the initial design of the loader, the maximum stress occurred in the mount and exceeded the yield strength of the material. In this paper, an improved design of the mount of the loader was proposed to reduce the stress concentration in the initial design. The safety of the improved design was verified by performing rigid-body dynamics analysis, transient structural analysis, and static structural analysis under three impact test conditions: a drop and catch test, a corner pull test, a corner push test. It was found that the local stress concentration in the mount that appeared in the initial design was greatly reduced in the improved design, and that the maximum stresses occurred in the three impact test conditions are smaller than the yield strength. It is expected that the design improvement of the mount proposed in this study and the method of analysis may be effectively used to enhance structural safety in the development of new model front loaders in the future.

Unified-type Design and Structural Analysis for Mecanum Wheel Performance Improvement (메카넘휠 성능개선을 위한 일체형 설계 및 구조해석)

  • Jeong, Jeaung;Kwon, Soon-Jae;Chu, Baeksuk;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.117-123
    • /
    • 2014
  • In order to provide a mobile robot with omnidirectionality, various types of omnidirectional wheels have been developed. This paper deals with an improved design and structural analysis of a Mecanum wheel, which is the type of omnidirectional wheels most commonly used in industrial fields. A geometric formulation for manufacturingthe Mecanum wheel is presented and two types of Mecanum wheels are designed and fabricated in this research. While conventional assembled-type Mecanum wheels have a complicated structure and the high possibility of mutual interference between sub-components, a unified type of Mecanum wheel reduces the number of sub-components and increases the degree of structural rigidity. The stress and strain properties of the two designs are compared to confirm the quantitative improvement of the new design by a commercial structural analysis tool. The analysis results show that the unified type of Mecanum wheel has properties superior to the assembled type of Mecanum wheel in terms of its ability to reduce interference.