For health monitoring purpose usually the structure is instrumented with a large scale and multichannel measurement system. In case of highway bridges, operating vehicle could be utilized to reduce the number of measuring devices. First this paper presents a static damage detection algorithm of using operating vehicle load. The technique has been validated by finite element simulation and simple laboratory test. Next the paper presents an approach of using this technique to field application. Here operating vehicle load data has been used by instrumenting the bridge at single location. This approach gives an upper hand to other sophisticated global damage detection methods since it has the potential of reducing the measuring points and devices. It also avoids the application of artificial loading and interruption of any traffic flow.
Park, Woong Ki;Lee, Chang Gil;Park, Seung Hee;You, Young Jun;Park, Ki Tae
Journal of the Korea institute for structural maintenance and inspection
/
v.17
no.2
/
pp.1-9
/
2013
In recent years, numerous mega-size and complex civil infrastructures have been constructed worldwide. For the more precise construction and maintenance process management of these civil infrastructures, the application of a variety of smart sensor-based structural health monitoring (SHM) systems is required. The efficient management of both sensors and collected databases is also very important. Recently, several kinds of database access technologies using Quick Response (QR) code and Augmented Reality (AR) applications have been developed. These technologies provide software tools incorporated with mobile devices, such as smart phone, tablet PC and smart pad systems, so that databases can be accessed very quickly and easily. In this paper, an AR-based structural health monitoring technique is suggested for sensor management and the efficient access of databases collected from sensor networks that are distributed at target structures. The global positioning system (GPS) in mobile devices simultaneously recognizes the user location and sensor location, and calculates the distance between the two locations. In addition, the processed health monitoring results are sent from a main server to the user's mobile device, via the RSS (really simple syndication) feed format. It can be confirmed that the AR-based structural health monitoring technique is very useful for the real-time construction process management of numerous mega-size and complex civil infrastructures.
Journal of the Korea institute for structural maintenance and inspection
/
v.6
no.2
/
pp.145-155
/
2002
It is essential for health monitoring of a cable-stayed bridge to provide more accurate and enough information from the sensors. In experimental modal testing, the chosen measurement locations and the number of measurements have a major influence on the quality of the results. The choice is often difficult for complex structures like a cable-stayed bridge. It is extremely important a cable-stayed bridge to minimize the number of sensing operations required to monitor the structural system. In order to obtain the desired accuracy for the structural test, several issues must take into consideration. Two important issues are the number and location of response sensors. There are usually several alternative locations where different sensors can be located. On the other hand, the number of sensors might be limited due to economic constraints. Therefore, techniques such as methodologies, algorithms etc., which address the issue of limited instrumentation and its effects on resolution and accuracy in health monitoring systems are paramount to a damage diagnosis approach. This paper discusses an optimum sensor placement criterion suitable to the identification of structural damage for continuous health monitoring. A Kinetic Energy optimization technique and an Effective Independence Method are analyzed and numerical and theoretical issues are addressed for a cable-stayed bridge. Its application to a cable-stayed bridge is discussed to optimize the sensor placement for identification and control purposes.
Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.
Ha, Nam;Chae, Kwan-Suk;Hong, Dong-Pyo;Chae, Hee-Chang
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2004.11a
/
pp.870-874
/
2004
This work presents a study on development of a practical and quantitative technique for assessment of the structural health condition by Piezoelectric impedance-based technique associated with longitudinal wave propagation method. The bolt fastening condition is adjusted by torque wrench. In order to estimate the damage condition numerically, three damage indices, impedance peak frequency shift ${\Delta}F$, peak amplitude ratio $\delta$ and quality factor ratio $\gamma$, are proposed in this paper. Furthermore, an assessment method is described for estimation of the damage by using these three damage indices.
Structural health monitoring has drawn great attention in the field of civil engineering in past two decades. These structural health monitoring methods evaluate structural integrity through high-quality sensor measurements of structures. Due to electronic deterioration or aging problems, sensors may yield biased signals. Therefore, the objective of this study is to develop a fault detection method that identifies malfunctioning sensors in a sensor network. This method exploits the autoregressive modeling technique to generate a bank of Kalman estimators, and the faulty sensors are then recognized by comparing the measurements with these estimated signals. Three types of faults are considered in this study including the additive, multiplicative, and slowly drifting faults. To assess the effectiveness of detecting faulty sensors, a numerical example is provided, while an experimental investigation with faults added artificially is studied. As a result, the proposed method is capable of determining the faulty occurrences and types.
A challenging problem in structural damage detection based on vibration data is the requirement of a large number of sensors and the numerical difficulty in obtaining reasonably accurate results when the system is large. To address this issue, the substructure identification approach may be used. Due to practical limitations, the response data are not available at all degrees of freedom of the structure and the external excitations may not be measured (or available). In this paper, an adaptive damage tracking technique, referred to as the sequential nonlinear least-square estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) and the sub-structure approach are used to identify damages at critical locations (hot spots) of the complex structure. In our approach, only a limited number of response data are needed and the external excitations may not be measured, thus significantly reducing the number of sensors required and the corresponding computational efforts. The accuracy of the proposed approach is illustrated using a long-span truss with finite-element formulation and an 8-story nonlinear base-isolated building. Simulation results demonstrate that the proposed approach is capable of tracking the local structural damages without the global information of the entire structure, and it is suitable for local structural health monitoring.
A non-contact, in-situ and non-invasive technique for health monitoring of submerged fiber reinforced polymers (FRP) laminates has been developed using ultrasonic guided waves. A pair of mobile transducers at specific angles of incidence to the submerged FRP specimen was used to excite Lamb wave modes. Lamb wave modes were used for comprehensive inspection of various types of manufacturing defects like air gaps and missing epoxy, introduced during manufacturing of FRP using Vacuum Assisted Resin Infusion Molding (VARIM). Further service induced damages like notches and surface defects were also studied and evaluated using guided waves. Quantitative evaluation of transmitted ultrasonic signal in defect ridden FRPs $vis-{\grave{a}}-vis$ healthy signal has been used to relate the extent of damage in FRPs. The developed technique has the potential to develop into a quick, real time health monitoring tool for judging the service worthiness of FRPs.
Journal of the Korea institute for structural maintenance and inspection
/
v.19
no.2
/
pp.92-98
/
2015
Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring (SHM) technique is increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and influenced by various external loads. "Abnormal behavior point" is a moment when the structure starts vibrating abnormally and this can be detected by comparing between before and after abnormal behavior point. In other words, anomalous behavior is a sign of damage on structures and estimating the abnormal behavior point can be directly related to the safety of structure. Abnormal behavior causes damage on structures and this leads to enormous economic damage as well as damage for humans. This study proposes an estimating technique to find abnormal behavior point using Hilber-Huang Transform which is a time-frequency signal analysis technique and the proposed algorithm has been examined through laboratory tests with a bridge model using a shaking table.
Proceedings of the Computational Structural Engineering Institute Conference
/
2007.04a
/
pp.21-26
/
2007
This paper presents an impedance-based structural health monitoring (SHM) technique considering temperature effects. The temperature variation results in a significant impedance variation, particularly both horizontal and vertical shifts in the frequency domain, which may lead to erroneous diagnostic results of real structures. A new damage detection strategy has been proposed based on the correlation coefficient (CC) between the reference impedance data and a concurrent impedance data with an effective frequency shift which is defined as the shift causing the maximum correlation. The proposed technique was applied to a lab-sized steel truss bridge member under the temperature varying environment. From an experimental study, it has been demonstrated that a narrow cut inflicted artificially to the steel structure was successfully detected using the proposed SHM strategy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.