• 제목/요약/키워드: Structural Health Monitoring System

검색결과 501건 처리시간 0.024초

사장교의 상시감시를 위한 최적 센서 구성 (Optimal Sensor Allocation of Cable-Stayed Bridge for Health Monitoring)

  • 허광희;최만용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.145-155
    • /
    • 2002
  • It is essential for health monitoring of a cable-stayed bridge to provide more accurate and enough information from the sensors. In experimental modal testing, the chosen measurement locations and the number of measurements have a major influence on the quality of the results. The choice is often difficult for complex structures like a cable-stayed bridge. It is extremely important a cable-stayed bridge to minimize the number of sensing operations required to monitor the structural system. In order to obtain the desired accuracy for the structural test, several issues must take into consideration. Two important issues are the number and location of response sensors. There are usually several alternative locations where different sensors can be located. On the other hand, the number of sensors might be limited due to economic constraints. Therefore, techniques such as methodologies, algorithms etc., which address the issue of limited instrumentation and its effects on resolution and accuracy in health monitoring systems are paramount to a damage diagnosis approach. This paper discusses an optimum sensor placement criterion suitable to the identification of structural damage for continuous health monitoring. A Kinetic Energy optimization technique and an Effective Independence Method are analyzed and numerical and theoretical issues are addressed for a cable-stayed bridge. Its application to a cable-stayed bridge is discussed to optimize the sensor placement for identification and control purposes.

Integrated vibration control and health monitoring of building structures: a time-domain approach

  • Chen, B.;Xu, Y.L.;Zhao, X.
    • Smart Structures and Systems
    • /
    • 제6권7호
    • /
    • pp.811-833
    • /
    • 2010
  • Vibration control and health monitoring of building structures have been actively investigated in recent years but treated separately according to the primary objective pursued. This paper presents a general approach in the time domain for integrating vibration control and health monitoring of a building structure to accommodate various types of control devices and on-line damage detection. The concept of the time-domain approach for integrated vibration control and health monitoring is first introduced. A parameter identification scheme is then developed to identify structural stiffness parameters and update the structural analytical model. Based on the updated analytical model, vibration control of the building using semi-active friction dampers against earthquake excitation is carried out. By assuming that the building suffers certain damage after extreme event or long service and by using the previously identified original structural parameters, a damage detection scheme is finally proposed and used for damage detection. The feasibility of the proposed approach is demonstrated through detailed numerical examples and extensive parameter studies.

가속도 응답을 이용한 실물 콘크리트 거더 교량의 구조건전성 모니터링 (Structural Health Monitoring of Full-Scale Concrete Girder Bridge Using Acceleration Response)

  • 홍동수;김정태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.165-174
    • /
    • 2010
  • 본 논문에서는 실물 콘크리트 거더 교량의 가속도 응답 신호를 이용하여 구조물의 상태변화를 경보한 후 그 위치 변화를 검색하는 2단계 구조건전성 모니터링 체계를 제시하였다. 먼저, 2경간 연속 콘크리트 거더 교량인 미호천교를 대상교량으로 선정하였으며, 볼링공을 이용한 강제진동 실험으로부터 동특성을 추출하였다. 다음으로, 미호천교의 2단계 구조건전성 모니터링 체계 구축을 위한 손상 발생 경보 및 손상 위치 검색 기법들을 선정하였다. 손상 경보 기법으로는 시간영역 특징을 이용하는 자기회귀모델과 주파수응답함수의 상관계수, 주파수응답비보증지수를 선정하였다. 손상 위치 검색 기법으로는 모드변형에너지기반 손상지수법을 선정하였다. 마지막으로, 덤프트럭을 이용한 정적 재하 실험을 통해 2단계 손상 모니터링 체계의 적합성을 검증하였다.

초경량항공기의 구조적 안전진단을 위한 센서 매립형 주익 모델 제작 (Implementation of Sensor-embedded Main Wing Model for Structural Health Monitoring of the Ultra Light Airplane)

  • 송재훈;양재원;임미선;김윤영;박훈;석종낙;김천곤;최선우;이장연
    • 항공우주기술
    • /
    • 제11권1호
    • /
    • pp.178-184
    • /
    • 2012
  • 본 논문에서는 초경량항공기의 사고 예방을 위한 실시간 안전진단 시스템(Health and Usage Monitoring System; HUMS)을 개발함에 있어 Test-bed 항공기에 HUMS를 적용한 주익 제작 과정을 살펴보고자 한다. 대상 항공기는 Jabiru-UL 모델이며, 주익 내부에 설치한 센서는 광섬유센서, 압전센서 및 스트레인 게이지이다. 센서 설치 후 조립을 완료한 주익에 대한 각 센서의 동작 여부에 대한 계측시험을 수행하였다. 조립 완료한 주익은 항공기에 장착되어 HUMS의 운영 성능 향상을 위한 데이터 획득 및 고장검출 알고리즘의 검증을 위한 Test-bed로 활용하고자 한다.

Fatigue Crack Detection Test of Weldments Using Piezoceramic Transducers

  • KIM MYUNG HYUN;KANG SUNG WON;KEUM CHUNG-YON
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.21-27
    • /
    • 2005
  • Large welded structures, including ships and offshore structures, are normally in operation under cyclic fatigue loadings. These structures include many geometric discontinuities, as well as material discontinuities due to weld joints. The fatigue strength at these hot spots is very important for the structural performance. In the past, various Non Destructive Evaluation (NDE) techniques have been developed to detect fatigue cracks and to estimate their location and size. However, an important limitation of most of the existing NDE methods is that they are off line; the normal operation of the structure has to be interrupted, and the device often has to be disassembled. This study explores the development of a structural health monitoring system, with a special interest in applying the technique to welded structural members in ship and offshore structures. In particular, the impedance based structural health monitoring technique that employs the coupling effect of piezoceramic (PZT) materials and structures is investigated.

주성분 분석(PCA)에 의한 항공기 왕복 엔진의 구조 건전도 모니터링 (Structural Health Monitoring of Aircraft Reciprocating Engine Based on Principal Component Analysis (PCA))

  • 김지환;박성은;이형철
    • 항공우주시스템공학회지
    • /
    • 제6권1호
    • /
    • pp.13-18
    • /
    • 2012
  • This paper presents a structural health monitoring method of aircraft reciprocating engine using Principal Component Analysis (PCA) which analyzes vibration expressed by Averaged Normalized Power Spectral Density (ANPSD). Because ANPSD of the rotating shaft is sensitive to the rotating speed, this paper proposes to use a post-processing method of ANPSD is used to reduce the sensitivity. The PCA extracts compressed information from the post-processed ANPSDs and the information means the difference between current and normal cases of the engine. The experimental results demonstrate the feasibility and effectiveness of the proposed method to detect abnormal cases of the engine.

LoRa LPWAN 기반의 대형 교량 구조건전성 모니터링 시스템 (Structural Health Monitoring System for Large-Bridge-Based LoRa LPWAN)

  • 박진오;김기돈;김경수;박상헌
    • 한국전산구조공학회논문집
    • /
    • 제36권1호
    • /
    • pp.49-56
    • /
    • 2023
  • 기술의 발전에 따라 전 세계적으로 교량은 대형화되고 있으며, 또한 노후 교량의 수도 급격히 증가하고 있다. 이들 대형, 노후 교량에 대한 구조건전성 모니터링은 대형 사고 예방을 위해 필수적이다. 본 연구에서는 LoRa LPWAN 기반 무선계측시스템의 적용에 대한 연구를 수행하였으며, 전남 신안군에 위치한 천사대교의 사장교 구간에 LoRa 무선계측시스템을 구축하였다. 교량의 주탑, 케이블, 보강거더에 대하여 계측시스템을 구축하여 기구축되어 운영 중인 유선기반 모니터링 시스템과 성능 및 경제성을 비교하여 LoRa LPWAN 기반 무선 모니터링 시스템의 대형 교량에서의 적용성을 검토하였다.

Health Monitoring System (HMS) for structural assessment

  • e Matos, Jose Campos;Garcia, Oscar;Henriques, Antonio Abel;Casas, Joan Ramon;Vehi, Josep
    • Smart Structures and Systems
    • /
    • 제5권3호
    • /
    • pp.223-240
    • /
    • 2009
  • As in any engineering application, the problem of structural assessment should face the different uncertainties present in real world. The main source of uncertainty in Health Monitoring System (HMS) applications are those related to the sensor accuracy, the theoretical models and the variability in structural parameters and applied loads. In present work, two methodologies have been developed to deal with these uncertainties in order to adopt reliable decisions related to the presence of damage. A simple example, a steel beam analysis, is considered in order to establish a liable comparison between them. Also, such methodologies are used with a developed structural assessment algorithm that consists in a direct and consistent comparison between sensor data and numerical model results, both affected by uncertainty. Such algorithm is applied to a simple concrete laboratory beam, tested till rupture, to show it feasibility and operational process. From these applications several conclusions are derived with a high value, regarding the final objective of the work, which is the implementation of this algorithm within a HMS, developed and applied into a prototype structure.

USN 기반의 대형 사회 기반 시설물 계측 시스템 개발 (Development of Structural Health Monitoring System based USN for a Huge Infrastructure)

  • 김태봉
    • 전기학회논문지P
    • /
    • 제65권1호
    • /
    • pp.7-12
    • /
    • 2016
  • With due to the recent development of USN (Ubiquitous Sensor Network) technology, a monitoring system has been developing for assuring the structural integrity of infrastructure through normal or long term measurements during their lifetime. An accident such as a collapse of infrastructure may cause not only loss of life but also damage to the economy of the nation. In order to enhance the availability of infrastructure and to be able to maintain their lifetime, it is necessary to monitor and to evaluate continuously the structural integrity throughout their entire lifetime. The purpose of this paper is to develop a monitoring system integrated with evaluation function based on the ubiquitous technology. The most essential part of this study is focusing more on developing a specific module convertible to A/D, which is to enhance the applicability of sensors that had not been applied to existing monitoring systems. Conclusively it has been successfully enhanced to make more diverse the number of sensors and measuring techniques for the monitoring system.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.