• 제목/요약/키워드: Structural Element

검색결과 7,490건 처리시간 0.031초

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate

  • Lee, Dongkyu;Park, Sungsoo;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • 제29권5호
    • /
    • pp.469-488
    • /
    • 2008
  • Finite element methods have often been used for structural analyses of various mechanical problems. When finite element analyses are utilized to resolve mechanical systems, numerical uncertainties in the initial data such as structural parameters and loading conditions may result in uncertainties in the structural responses. Therefore the initial data have to be as accurate as possible in order to obtain reliable structural analysis results. The typical finite element method may not properly represent discrete systems when using uncertain data, since all input data of material properties and applied loads are defined by nominal values. An interval finite element analysis, which uses the interval arithmetic as introduced by Moore (1966) is proposed as a non-stochastic method in this study and serves a new numerical tool for evaluating the uncertainties of the initial data in structural analyses. According to this method, the element stiffness matrix includes interval terms of the lower and upper bounds of the structural parameters, and interval change functions are devised. Numerical uncertainties in the initial data are described as a tolerance error and tree graphs of uncertain data are constructed by numerical uncertainty combinations of each parameter. The structural responses calculated by all uncertainty cases can be easily estimated so that structural safety can be included in the design. Numerical applications of truss and frame structures demonstrate the efficiency of the present method with respect to numerical analyses of structural uncertainties.

Reliability-based assessment of steel bridge deck using a mesh-insensitive structural stress method

  • Ye, X.W.;Yi, Ting-Hua;Wen, C.;Su, Y.H.
    • Smart Structures and Systems
    • /
    • 제16권2호
    • /
    • pp.367-382
    • /
    • 2015
  • This paper aims to conduct the reliability-based assessment of the welded joint in the orthotropic steel bridge deck by use of a mesh-insensitive structural stress (MISS) method, which is an effective numerical procedure to determine the reliable stress distribution adjacent to the weld toe. Both the solid element model and the shell element model are first established to investigate the sensitivity of the element size and the element type in calculating the structural stress under different loading scenarios. In order to achieve realistic condition assessment of the welded joint, the probabilistic approach based on the structural reliability theory is adopted to derive the reliability index and the failure probability by taking into account the uncertainties inherent in the material properties and load conditions. The limit state function is formulated in terms of the structural resistance of the material and the load effect which is described by the structural stress obtained by the MISS method. The reliability index is computed by use of the first-order reliability method (FORM), and compared with a target reliability index to facilitate the safety assessment. The results achieved from this study reveal that the calculation of the structural stress using the MISS method is insensitive to the element size and the element type, and the obtained structural stress results serve as a reliable basis for structural reliability analysis.

오픈하우징의 구조적 유형화에 관한 연구 (A Typological Approach to Structural Characteristics in Open Housing)

  • 모정현;이연숙
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.45-52
    • /
    • 2004
  • The purpose of this research was to identify the structural characteristics of open housing typologically and systematically. The main method of this study was content analysis and literature review on open housing. This study found that the typological analysis on terminology and the details of the constituents concerning structural patterns in open housing indicated that the main approaches were classified into three criteria such as 'Organization Element', 'Construction Element', and 'Equipment Element'. Organization Element was classified into 'Main Dwelling Unit Area and its Form', 'Room Organization Method', 'Relationship with the Main Dwelling Unit's External Constituents', and 'Combination Method of Support and Infill'. Construction Element was classified into 'Method of Structure' and 'Structural Element Technology'. Equipment Element was classified into 'Method of Using Duct' and 'Wet Zone Method'. The attributes were determined based on these classifications. The results of this study can be used to construct an evaluation tool and further to develop a framework in understanding open housing. Technical research should be conducted on the variables that affect the flexibility of space.

An Automated Adaptive Finite Element Mesh Generation for Dynamics

  • Yoon, Chongyul
    • 한국지진공학회논문집
    • /
    • 제23권1호
    • /
    • pp.83-88
    • /
    • 2019
  • Structural analysis remains as an essential part of any integrated civil engineering system in today's rapidly changing computing environment. Even with enormous advancements in capabilities of computers and mobile tools, enhancing computational efficiency of algorithms is necessary to meet the changing demands for quick real time response systems. The finite element method is still the most widely used method of computational structural analysis; a robust, reliable and automated finite element structural analysis module is essential in a modern integrated structural engineering system. To be a part of an automated finite element structural analysis, an efficient adaptive mesh generation scheme based on R-H refinement for the mesh and error estimates from representative strain values at Gauss points is described. A coefficient that depends on the shape of element is used to correct overly distorted elements. Two simple case studies show the validity and computational efficiency. The scheme is appropriate for nonlinear and dynamic problems in earthquake engineering which generally require a huge number of iterative computations.

강성계수의 전달에 의한 평판 구조물의 구조해석 (Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

구조용 케이블의 장력 변화에 따른 정착부의 임피던스 특성에 대한 유한요소해석 (Finite Element Analysis on Impedance Parameters of Anchor Plate of Structural Cables Under Cable Force Changes)

  • ;박재형;홍동수;이주원;김정태;나원배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.783-786
    • /
    • 2010
  • This paper presents a finite element analysis on impedance parameters of anchor plates of structural cables under the change in cable forces. To achieve the objective, four approaches are implemented as follows: Firstly, theoretical background of electro-mechanical impedance is described. Secondly, anchor plates of structural cables are selected to experimentally examine the relationship between impedance parameters and cable force changes. Thirdly, finite element analysis is performed to verify the experimental results. Fourthly, a comparison between the experimental and numerical analysis on impedance parameters of anchor plate of structural cables under cable force changes is carried out.

  • PDF

An incompatible 3D solid element for structural analysis at elevated temperatures

  • Yu, Xinmeng;Zha, Xiaoxiong;Huang, Zhaohui
    • Structural Engineering and Mechanics
    • /
    • 제40권3호
    • /
    • pp.393-410
    • /
    • 2011
  • The eight-node 3D solid element is one of the most extensively used elements in computational mechanics. This is due to its simple shape and easy of discretization. However, due to the parasitic shear locking, it should not be used to simulate the behaviour of structural members in bending dominant conditions. Previous researches have indicated that the introduction of incompatible mode into the displacement field of the solid element could significantly reduce the shear locking phenomenon. In this study, an incompatible mode eight-node solid element, which considers both geometric and material nonlinearities, is developed for modelling of structural members at elevated temperatures. An algorithm is developed to extend the state determination procedure at ambient temperature to elevated temperatures overcoming initially converged stress locking when the external load is kept constant. Numerical studies show that this incompatible element is superior in terms of convergence, mesh insensitivity and reducing shear locking. It is also showed that the solid element model developed in this paper can be used to model structural behaviour at both ambient and elevated temperatures.

Eight-node field-consistent hexahedron element in dynamic problems

  • Rajendran, S.;Prathap, G.
    • Structural Engineering and Mechanics
    • /
    • 제8권1호
    • /
    • pp.19-26
    • /
    • 1999
  • Superior performance of field consistent eight-node hexahedron element in static bending problems has already been demonstrated in literature. In this paper, its performance in free vibration is investigated. Free vibration frequencies of typical test problems have been computed using this element. The results establish its superior performance in free vibration, particularly in thin plate application and near incompressibility regimes, demonstrating that shear locking, Poisson's stiffening and volumetric locking have been eliminated.

Analysis of a cable-stayed bridge with uncertainties in Young's modulus and load - A fuzzy finite element approach

  • Rama Rao, M.V.;Ramesh Reddy, R.
    • Structural Engineering and Mechanics
    • /
    • 제27권3호
    • /
    • pp.263-276
    • /
    • 2007
  • This paper presents a fuzzy finite element model for the analysis of structures in the presence of multiple uncertainties. A new methodology to evaluate the cumulative effect of multiple uncertainties on structural response is developed in the present work. This is done by modifying Muhanna's approach for handling single uncertainty. Uncertainty in load and material properties is defined by triangular membership functions with equal spread about the crisp value. Structural response is obtained in terms of fuzzy interval displacements and rotations. The results are further post-processed to obtain interval values of bending moment, shear force and axial forces. Membership functions are constructed to depict the uncertainty in structural response. Sensitivity analysis is performed to evaluate the relative sensitivity of displacements and forces to uncertainty in structural parameters. The present work demonstrates the effectiveness of fuzzy finite element model in establishing sharp bounds to the uncertain structural response in the presence of multiple uncertainties.