• Title/Summary/Keyword: Structural Efficiency

Search Result 2,612, Processing Time 0.036 seconds

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

The Design Concept and World-wide Trends for the Structural Design of Footbridge (보도육교 구조디자인의 세계적 추세와 설계개념)

  • Park, Sun-Woo;Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.107-115
    • /
    • 2004
  • A vocabulary for a understanding bridge has a different scope. The main characteristics of the modem footbridge are appropriateness, aesthetics and structural efficiency. Design concepts of footbridge design are investigated. There are functional concepts, aesthetical concepts like geometry, symbolism, lighting, and movement, and technical concepts. Futhermore, adaptation examples of these structural concepts for pedestrian bridges are presented.

  • PDF

A Study on the Structure Analysis of Riveting Process for Aircraft Frame Manufacturing (항공기 프레임 제작을 위한 리벳팅 공정의 구조해석에 관한 연구)

  • Lee, Choon-Man;Oh, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Riveting is mainly used to assemble the aircraft fuselage. An average of 2~3 workers is needed to assemble an aircraft fuselage consisting of various size frames by riveting. In this study, a riveting process that enables one-person operation using an automated C-frame riveting machine was proposed for improving the efficiency of productivity. The proposed process was verified stability through structural analysis. In the range that can maintain structural stability, panel thickness of the riveting machine and shape were modified to optimizing the shape for reducing the weight of the riveting process. The structural analysis was performed by software ANSYS workbench 19.2. The optimized riveting machine was reduced by 257kg compared to the existing model.

Optimal analysis and design of large-scale domes with frequency constraints

  • Kaveh, A.;Zolghadr, A.
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.733-754
    • /
    • 2016
  • Structural optimization involves a large number of structural analyses. When optimizing large structures, these analyses require a considerable amount of computational time and effort. However, there are specific types of structure for which the results of the analysis can be achieved in a much simpler and quicker way thanks to their special repetitive patterns. In this paper, frequency constraint optimization of cyclically repeated space trusses is considered. An efficient technique is used to decompose the large initial eigenproblem into several smaller ones and thus to decrease the required computational time significantly. Some examples are presented in order to illustrate the efficiency of the presented method.

Simultaneous analysis, design and optimization of trusses via force method

  • Kaveh, A.;Bijari, Sh.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.233-241
    • /
    • 2018
  • In this paper, the Colliding Bodies Optimization (CBO), Enhanced Colliding Bodies Optimization (ECBO) and Vibrating Particles System (VPS) algorithms and the force method are used for the simultaneous analysis and design of truss structures. The presented technique is applied to the design and analysis of some planer and spatial trusses. An efficient method is introduced using the CBO, ECBO and VPS to design trusses having members of prescribed stress ratios. Finally, the minimum weight design of truss structures is formulated using the CBO, ECBO and VPS algorithms and applied to some benchmark problems from literature. These problems have been designed by using displacement method as analyzer, and here these are solved for the first time using the force method. The accuracy and efficiency of the presented method is examined by comparing the resulting design parameters and structural weight with those of other existing methods.

A Study of Structural Analysis for Space Frame on the World Wide Web (인터넷을 통한 스페이스 프레임 구조 해석에 관한 연구)

  • Suk, Chang-Mok;Nam, Sang-Kwan;Park, Sang-Hoon;Jung, Hwan-Mok;Kwon, Young-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.135-142
    • /
    • 2001
  • This paper proposes structural analysis on the World Wide Web to form a part of the architectural design project. It purposes modeling space frames and a structural analysis program on the internet only by inputting basic data for forming a shape in the whole phase of space frame analysis. The analysis data is conducted by Oracle DBMS(DataBase Management System), GUI(Graphic User Internet) by Java Applet and connection with server and database by Java Servlet respectively. The result from modeling and analysis is provided as graphic and text file forms by web browsers. Programs can be executed irrespective of user's OS by using internet and highly-secured system is constructed taking advantage of Java. Of great efficiency is maintaining and recycling data as the whole is dealt by database from the beginning to the end of program.

  • PDF

Determination of Strut-and-fie Models using Evolutionary Structural Optimization (ESO기법을 이용한 스트럿-타이 모델의 결정)

  • 곽효경;노상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.295-302
    • /
    • 2002
  • This paper introduces a method to determine strut-tie models in reinforced concrete (RC) structures using the evolutionary structural optimization (ESO). Even though strut-tie models are broadly adapted in design of reinforced concrete members subjected to shear and torsion, conventional methods can hardly give correct models in RC members subjected to complex loadings and geometry conditions. In this paper, the basic idea of the ESO method is used to determine more rational strut-tie models. Since an optimum topology of structures, finally obtained by the ESO method, usually represents a truss-like structure, the ESO method can effectively be used in finding the best strut-tie model in RC structures. Several example structures are provided to demonstrate the capability of the proposed method in finding the best strut-tie model of each RC structure and to verify its efficiency in application to real design problems.

  • PDF

Optimum Structural Design of a Corrugated Bulkhead by using Flexible Tolerance Method (FTM을 이용한 파형격벽의 최적구조설계)

  • S.J.,Yim;G.H.,Kim;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.45-52
    • /
    • 1987
  • In this paper, merits and demerits of Nelder and Mead Penalty Function Method(SUMTNM) and Flexible Tolerance Method(FTM) are investigated from the standpoint of generality, accuracy and efficiency. SUMTNM is combined with Nelder and Method and SUMT, but FTM improves the values of the objective function by using information provided by feasible points as well as certain nonfeasible points termed near-feasible points. Therefore, FTM uses more information than SUMTNM for minimizing object function. The structural analysis of a vertically corrugated bulkhead is performed by collapse mechanism and plate buckling analysis. Based on the results of this analysis, minimum structural weight design of a corrugated bulkhead by use of above two optimization techniques is carried out by investigating the effects of sizes of bulkhead on the structural weight.

  • PDF

Multicut high dimensional model representation for reliability analysis

  • Chowdhury, Rajib;Rao, B.N.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.651-674
    • /
    • 2011
  • This paper presents a novel method for predicting the failure probability of structural or mechanical systems subjected to random loads and material properties involving multiple design points. The method involves Multicut High Dimensional Model Representation (Multicut-HDMR) technique in conjunction with moving least squares to approximate the original implicit limit state/performance function with an explicit function. Depending on the order chosen sometimes truncated Cut-HDMR expansion is unable to approximate the original implicit limit state/performance function when multiple design points exist on the limit state/performance function or when the problem domain is large. Multicut-HDMR addresses this problem by using multiple reference points to improve accuracy of the approximate limit state/performance function. Numerical examples show the accuracy and efficiency of the proposed approach in estimating the failure probability.

Reduced record method for efficient time history dynamic analysis and optimal design

  • Kaveh, A.;Aghakouchak, A.A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.639-663
    • /
    • 2015
  • Time history dynamic structural analysis is a time consuming procedure when used for large-scale structures or iterative analysis in structural optimization. This article proposes a new methodology for approximate prediction of extremum point of the response history via wavelets. The method changes original record into a reduced record, decreasing the computational time of the analysis. This reduced record can be utilized in iterative structural dynamic analysis of optimization and hence significantly reduces the overall computational effort. Design examples are included to demonstrate the capability and efficiency of the Reduced Record Method (RRM) when utilized in optimal design of frame structures using meta-heuristic algorithms.