• Title/Summary/Keyword: Structural Efficiency

Search Result 2,612, Processing Time 0.038 seconds

BAF53 is Critical for Focus Formation of $\gamma$-H2AX in Response to DNA Damage

  • Park, Pan-Kyu;Kang, Dong-Hyun;Kwon, Hyock-Man
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.405-409
    • /
    • 2009
  • When DNA double-strand breaks (DSBs) were induced in mammalian cells, many DNA damage response proteins are accumulated at damage sites to form nuclear foci called IR-induced foci. Although the formation of foci has been shown to promote repair efficiency, the structural organization of chromatin in foci remains obscure. BAF53 is an actin-related protein which is required for maintenance of chromosome territory. In this study, we show that the formation of IR-induced foci by $\gamma$-H2AX and 53BP1 were reduced when BAF53 is depleted, while DSB- activated ATM pathway and the phosphorylation of H2AX remains intact after DNA damage in BAF53 knockdown cells. We also found that DSB repair efficiency was largely compromised in BAF53 knockdown cells. These results indicate that BAF53 is critical for formation of foci by $\gamma$-H2AX decorated chromatin at damage sites and the structural organization of chromatin in foci is an important factor to achieve the maximum efficiency of DNA repair.

A modified replacement beam for analyzing building structures with damping systems

  • Faridani, Hadi Moghadasi;Capsoni, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.905-929
    • /
    • 2016
  • This paper assesses efficiency of the continuum method as the idealized system of building structures. A modified Coupled Two-Beam (CTB) model equipped with classical and non-classical damping has been proposed and solved analytically. In this system, complementary (non-classical) damping models composed of bending and shear mechanisms have been defined. A spatial shear damping model which is non-homogeneously distributed has been adopted in the CTB formulation and used to equivalently model passive dampers, viscous and viscoelastic devices, embedded in building systems. The application of continuum-based models for the dynamic analysis of shear wall systems has been further discussed. A reference example has been numerically analyzed to evaluate the efficiency of the presented CTB, and the optimization problems of the shear damping have been finally ascertained using local and global performance indices. The results reveal the superior performance of non-classical damping models against the classical damping. They show that the critical position of the first modal rotation in the CTB is reliable as the optimum placement of the shear damping. The results also prove the good efficiency of such a continuum model, in addition to its simplicity, for the fast estimation of dynamic responses and damping optimization issues in building systems.

A Study for Remained Efficiency of Correction Heating after Block Lifting (블록 리프팅 후 갑판 교정가열의 잔존 효율 연구)

  • Ha, Yun-Sok;Won, Seok-Hee;Yi, Myung-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.118-125
    • /
    • 2008
  • The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.

  • PDF

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

An efficient reliability analysis strategy for low failure probability problems

  • Cao, Runan;Sun, Zhili;Wang, Jian;Guo, Fanyi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • For engineering, there are two major challenges in reliability analysis. First, to ensure the accuracy of simulation results, mechanical products are usually defined implicitly by complex numerical models that require time-consuming. Second, the mechanical products are fortunately designed with a large safety margin, which leads to a low failure probability. This paper proposes an efficient and high-precision adaptive active learning algorithm based on the Kriging surrogate model to deal with the problems with low failure probability and time-consuming numerical models. In order to solve the problem with multiple failure regions, the adaptive kernel-density estimation is introduced and improved. Meanwhile, a new criterion for selecting points based on the current Kriging model is proposed to improve the computational efficiency. The criterion for choosing the best sampling points considers not only the probability of misjudging the sign of the response value at a point by the Kriging model but also the distribution information at that point. In order to prevent the distance between the selected training points from too close, the correlation between training points is limited to avoid information redundancy and improve the computation efficiency of the algorithm. Finally, the efficiency and accuracy of the proposed method are verified compared with other algorithms through two academic examples and one engineering application.

Finite Element Analysis for the Penetration Phenomena of Shaped Charge Jets using Hydrodynamic Theory (Hydrodynamic 이론을 이용한 성형작약탄두 제트의 관통 현상에 관한 유한요소 해석)

  • Kang, Youngku
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.133-140
    • /
    • 2019
  • In this paper, the penetration process of Shaped charge jet(SCJ) was simulated through finite element analysis to obtain physical quantities such as jet incidence velocity, penetration rate, and penetration increment. As a result of applying these physical quantities to the hydrodynamic theory, it was confirmed that the penetration efficiency of the jet with a high incident velocity is higher than that of the following slow jet. This efficiency decreased sharply when the jet was slower than the hydrodynamic limit(HL). On the other hand, the comparison of penetration increment and jet consumption over time showed that the length extension effect should be considered for SCJ's theoretical penetration analysis.

The Efficiency of Steel Brace Strengthening of School Buildings according to the Failure Mode of Columns (기둥 파괴모드에 따른 학교 건물 철골 가새 보강의 효율성)

  • Lee, Hee Seop;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2023
  • Steel brace strengthening is the most popular seismic rehabilitation method for school buildings. This is because the design can be conducted by using relatively easy nonlinear pushover analysis and standard modeling in codes. An issue with steel brace strengthening is that the reinforced building should behave elastically to satisfy performance objectives. For this, the size of steel braces should be highly increased, which results in excessive strengthening cost by force concentration on existing members and foundations due to the considerable stiffness and strength of the steel braces. The main reason may be the brittle failure mode of columns, so this study investigated the relationship between the efficiency of steel brace strengthening and column failure modes. The result showed that the efficiency is highly dependent on the shear capacity ratio of columns and structural analysis methods. School buildings reinforced by steel braces do not need to behave elastically when the shear capacity ratio is low, and pushover analysis is used, which means reducing steel material is possible.

Characteristics and Efficiency Analysis of Evolutionary Seoul Metropolitan Subway Network (진화하는 서울 지하철 망의 특성과 효율성 분석)

  • Zzang, See-Young;Lee, Kang-Won
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.388-396
    • /
    • 2016
  • The metropolitan subway network of Seoul has gone through many evolutionary processes in past decades to disperse the floating population and improve the traffic flow. In this study, we analyzed how the structural characteristics and the efficiency of the subway network have changed according to the dynamic evolutionary processes of the metropolitan subway network of Seoul. We have also proposed new measures that can be used to characterize the structural properties of the subway network more practically. It is shown that the global efficiency is about 74%, which is higher than those of subway networks of foreign countries. It should also be considered that passenger flow between stations is even higher, at about 85%. Since the private lines, including line 9, the New Bundang line, the Uijeongbu line, and the Ever line do not release their traffic data since September, 2013, only 5 years of data from September, 2008 to September, 2013 is available. So, in this study we limit the analysis period to these 5 years.

Comparison of Efficiency by Span in Various Railway Bridge Types (철도교량형식의 경간에 따른 효율성 비교연구)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • The superstructure type of the railway bridge in our country, is mainly classified into the box girder and the I-type girder. The box girder is widely used in the high speed railway bridge because of the safety due to dynamic behavior. The I-type girder is used in the conventional railway bridge, and is also divided into the general type and the composite type, and the newly modified types have been developed. According to the current railway bridge design code, the girder design by the span length in various railway bridge types are performed in this study. The suitable girder height by the span length are analyzed, and the comparative analysis of the structural efficiency and the economical efficiency is carried out. From this study, the composite type girder is appeared the good result in respect of the structural efficiency. However, in the economical aspect, the general I-type girder is required less cost than the other types.