• Title/Summary/Keyword: Structural Efficiency

Search Result 2,612, Processing Time 0.037 seconds

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

The Evaluation of Personal Protective Equipment Usage Habit of Mining Employees Using Structural Equation Modeling

  • Kursunoglu, Nilufer;Onder, Seyhan;Onder, Mustafa
    • Safety and Health at Work
    • /
    • v.13 no.2
    • /
    • pp.180-186
    • /
    • 2022
  • Background: In occupational studies, it is a known situation that technical and organizational attempts are used to prevent occupational accidents. Especially in the mining sector, if these attempts cannot prevent occupational accidents, personal protective equipment (PPE) becomes a necessity. Thus, in this study, the main objective is to examine the effects of the variables on the use of PPE and identify important factors. Methods: A questionnaire was implemented and structural equation modeling was conducted to ascertain the significant factors affecting the PPE use of mining employees. The model includes the factors that ergonomics, the efficiency of PPE and employee training, and PPE usage habit. Results: The results indicate that ergonomics and employee training have no significant effect (p > 0.05) on the use of PPE. The efficiency of PPE has a statistically meaningful effect (p < 0.05) on the use of PPE. Various variables have been evaluated in previous studies. However, none of them examined the variables simultaneously. Conclusion: The developed model in the study enables to better focus on ergonomics and employee training in the PPE usage. The effectiveness of a PPE makes its use unavoidable. Emphasizing PPE effectiveness in OHS training and even showing them in practice will increase employees' PPE usage. The fact that a PPE with high effectiveness is also ergonomic means that it will be used at high rates by the employee.

A general active-learning method for surrogate-based structural reliability analysis

  • Zha, Congyi;Sun, Zhili;Wang, Jian;Pan, Chenrong;Liu, Zhendong;Dong, Pengfei
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.167-178
    • /
    • 2022
  • Surrogate models aim to approximate the performance function with an active-learning design of experiments (DoE) to obtain a sufficiently accurate prediction of the performance function's sign for an inexpensive computational demand in reliability analysis. Nevertheless, many existing active-learning methods are limited to the Kriging model, while the uncertainties of the Kriging itself affect the reliability analysis results. Moreover, the existing general active-learning methods may not achieve a fully satisfactory balance between accuracy and efficiency. Therefore, a novel active-learning method GLM-CM is constructed to yield the issues, which conciliates several merits of existing methods. To demonstrate the performance of the proposed method, four examples, concerning both mathematical and engineering problems, were selected. By benchmarking obtained results with literature findings, various surrogate models combined with the proposed method not only provide an accurate reliability evaluation while highly alleviating the computational burden, but also provides a satisfactory balance between accuracy and efficiency compared to the other reliability methods.

Development of Standardization Algorithm for Indoor Point Cloud Data Based on the Geometric Feature of Structural Components (구조 부재의 형상적 특성 기반의 실내 포인트 클라우드 데이터의 표준화 알고리즘 개발)

  • Oh, Sangmin;Cha, Minsu;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.345-346
    • /
    • 2023
  • As the shape and size of detectable objects diversifying recognition and segmentation algorithms have been developed to acquire accurate shape information. Although a high density of data captured by the repetition of scanning improves the accuracy of algorithms the high dense data decreases the efficiency due to its large size. This paper proposes standardization algorithms using the feature of structural members on indoor point cloud data to improve the process. First of all we determine the reduction rate of the density based on the features of the target objects then the data reduction algorithm compresses the data based on the reduction rate. Second the data arrangement algorithm rotates the data until the normal vector of data is aligned along the coordinate axis to allow the following algorithms to operate properly. Final the data arrangement algorithm separates the rotated data into their leaning axis. This allows reverse engineering of indoor point clouds to obtain the efficiency and accuracy of refinement processes.

  • PDF

A Development of Finish Drawing Automation System for Improving Efficiency on BIM based Estimation (BIM 기반 견적업무 효율성 증대를 위한 마감설계자동화 시스템 개발)

  • Kim, Seong-Ah;Kang, Myung-Ku;Shin, Tea-Hong;Chin, Sang-Yoon;Yoon, Su-Won;Choi, Cheol-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.429-434
    • /
    • 2008
  • The objective of this paper is to introduce a project on developing Finish Drawing Automation System. The system aims to improve efficiency of the BIM-based estimation, which is realized by automatic derivation of three-dimensional geometry models of the finish details. First, overall workload differences between the drawing-based estimation methods and the BIM-based methods are analyzed. Second, an automated finish detail design method is proposed as a time-saving measure for the BIM-based estimation, as manual modeling accounts for the most time spent in the model-based estimation process. Finally, the proposed system is evaluated using a case of washboard design.

  • PDF

The Efficiency of 3D Design in the PSC Beam Bridge (PSC Beam 교에서의 3D 설계 효용성)

  • Shin, Wook-Beom;Ahn, Do-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.104-107
    • /
    • 2008
  • A case study is conducted by between using 3D integrated automatic design software(ABeamDeck, AAbutPier) and using autocad without program to validate the method. As a result, there are many profits introducing the 3D design in the construction, especially, to make up for defect of existing design method. 3D design will enhance the efficiency of construction tasks by supporting a system of sharing and exchanging information throughout all the stages of construction, from design, production and installation to maintenance.

  • PDF

Form-finding analysis of suspension bridges using an explicit Iterative approach

  • Cao, Hongyou;Zhou, Yun-Lai;Chen, Zhijun;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.85-95
    • /
    • 2017
  • This paper presents an explicit analytical iteration method for form-finding analysis of suspension bridges. By extending the conventional analytical form-finding method predicated on the elastic catenary theory, two nonlinear governing equations are derived for calculating the accurate unstrained lengths of the entire cable systems both the main cable and the hangers. And for the gradient-based iteration method, the derivation of explicit calculation for the Jacobian matrix while solving the nonlinear governing equation enhances the computational efficiency. The results from sensitivity analysis show well performance of the explicit Jacobian matrix compared with the traditional finite difference method. According to two numerical examples of long span suspension bridges studied, the proposed method is also compared with those reported approaches or the fundamental criterions in suspension bridge structural analysis, which eventually confirms the accuracy and efficiency of the proposed approach.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Influence of Co-Surfactants to Surfactant-Enhanced Remediation of Diesel-Contaminated Sandy Soil

  • 김종성;김우정;이은영;이기세
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.149-152
    • /
    • 2000
  • The effects of selected co-surfactants on diesel removal from sandy soil were studied to increase diesel recovery from the soil by the surfactant-enhanced remediation of diesel-contaminated soil. The capability of co-surfactant for enhancing removal efficiency can be related with the interaction between its structural character and the structural peculiarity of nonionic surfactant. In the case of Tween 80, hexanol showed the great improvement in diesel recovery. Efficiency of diesel recovery decreased as hydrocarbon chain length of cosurfactant decreased. Higher content of hexanol further increased diesel recovery, but there was no significant improvement in the case of butanol and pentanol.

  • PDF