• 제목/요약/키워드: Structural Dynamic Model

검색결과 1,841건 처리시간 0.033초

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

Determination of the restoration effect on the structural behavior of masonry arch bridges

  • Altunisik, A.C.;Bayraktar, A.;Genc, A.F.
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.101-139
    • /
    • 2015
  • In this paper, it is aimed to investigate the restoration effect on the structural behavior of masonry arch bridges. Dandalaz masonry arch bridge located on the 4km east of Karacasu town of Aydin, Turkey is selected as a numerical example. The construction year of the bridge is not fully known, but the bridge is dated back to 15th century. Considering the current situation, it can be easily seen that the structural elements such as arch, side walls and timber blocks are heavily damaged and the bridge is unserviceable. Firstly finite element model of the bridge is constituted to reflect the current situation (before restoration) using building survey drawings. After, restoration project is explained and finite element model is reconstituted (after restoration). The structural responses of the bridge are obtained before and after restoration under dead load, live load and dynamic earthquake loads. For both conditions, maximum displacements, maximum-minimum principal stresses and maximum-minimum elastic strains are given with detail using contours diagrams and compared with each other to determine the restoration effect. From the study, it can be seen that the maximum internal forces are consisted under dynamic loads before and after restoration. Also, the restoration projects and studies have important and positive effects on the structural response of the bridge to transfer these structures to future.

Movement identification model of port container crane based on structural health monitoring system

  • Kaloop, Mosbeh R.;Sayed, Mohamed A.;Kim, Dookie;Kim, Eunsung
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.105-119
    • /
    • 2014
  • This study presents a steel container crane movement analysis and assessment based on structural health monitoring (SHM). The accelerometers are used to monitor the dynamic crane behavior and a 3-D finite element model (FEM) was designed to express the static displacement of the crane under the different load cases. The multi-input single-output nonlinear autoregressive neural network with external input (NNARX) model is used to identify the crane dynamic displacements. The FEM analysis and the identification model are used to investigate the safety and the vibration state of the crane in both time and frequency domains. Moreover, the SHM system is used based on the FEM analysis to assess the crane behavior. The analysis results indicate that: (1) the mean relative dynamic displacement can reveal the relative static movement of structures under environmental load; (2) the environmental load conditions clearly affect the crane deformations in different load cases; (3) the crane deformations are shown within the safe limits under different loads.

동적 특성을 고려한 수소 튜브 트레일러의 구조 안전성 평가 (Evaluation of Structural Safety for Hydrogen Tube Trailer Considering Dynamic Property)

  • 김유빈;김민기;고대철
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.169-177
    • /
    • 2024
  • Recently, hydrogen energy has been widely used because of strict regulations on greenhouse gas emissions. For using the hydrogen energy, it is required to supply hydrogen through a tube trailer. However hydrogen tube trailer can have excessive load problems during transportation due to reasons such as road shape and driving method, which may lead a risk of hydrogen leakage. So it is necessary to secure a high level of safety. The purpose of this study is to evaluate structural safety for the conservative design of hydrogen tube trailer. First, finite element(FE) modeling of the designed hydrogen tube trailer was performed. After that, safety evaluation method was established through static structural simulation based on the standard GC207 conditions. In addition, effectiveness of the designed model was confirmed through the results of the structural safety evaluation. Finally, driving simulation was used to derive acceleration graph according to time, which was considered as a dynamic property for the evaluation of conservative tube trailer safety evaluation. And dynamic structural simulation was conducted as a condition for actual transportation of tube trailer by applying dynamic properties. As a results, conservative safety was evaluated through dynamic structural simulation and the safety of hydrogen tube trailer was confirmed through satisfaction of the safety rate.

점성감쇠 모텔을 위한 새로운 동적 압축 방법 (Alternative Dynamic Condensation Methods for Viscously Damped Models)

  • 정양기
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.1048-1055
    • /
    • 2006
  • Two ways can be used for dynamic condensation of viscously damped structural models. One is reducing the model in physical space at first and then transferring it to state space. The other is ,condensing the model in state space directly. Two iterative schemes for each way are given respectively. Hence four iterative schemes for dynamic condensation of nonclassically damped models are discussed in this paper. A high building with a tuned mass damper is applied to show the efficiency of these schemes.

  • PDF

Time-dependent effects on dynamic properties of cable-stayed bridges

  • Au, Francis T.K.;Si, X.T.
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.139-155
    • /
    • 2012
  • Structural health monitoring systems are often installed on bridges to provide assessments of the need for structural maintenance and repair. Damage or deterioration may be detected by observation of changes in bridge characteristics evaluated from measured structural responses. However, construction materials such as concrete and steel cables exhibit certain time-dependent behaviour, which also results in changes in structural characteristics. If these are not accounted for properly, false alarms may arise. This paper proposes a systematic and efficient method to study the time-dependent effects on the dynamic properties of cable-stayed bridges. After establishing the finite element model of a cable-stayed bridge taking into account geometric nonlinearities and time-dependent behaviour, long-term time-dependent analysis is carried out by time integration. Then the dynamic properties of the bridge after a certain period can be obtained. The effects of time-dependent behaviour of construction materials on the dynamic properties of typical cable-stayed bridges are investigated in detail.

점탄성 감쇠기의 비선형거동을 고려한 선형모델 해석 (Linear Modeling of Viscoelastic Dampers Considering Nonlinear Dynamic Behavior)

  • 김진구;권영집;민경원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.171-177
    • /
    • 2002
  • The viscoelastic dampers are considered to be one of the most efficient means of upgrading existing structures against seismic loads. Generally in the dynamic analysis of a structure with added viscoelastic dampers the internal forces of the dampers are represented by constants that are linearly proportional to displacement and velocity. The purpose of this study is to verify the validity of the linear Kelvin model by comparing the results from the linear analysis with those obtained from the more rigorous nonlinear model such as fractional derivative model. According to the results the structural responses of 1-DOF structure obtained using the linear model are very close to those obtained from nonlinear model. However for multi-D0F structure the difference between the results from both models is enlarged as a results of the assumptions associated with the linear modeling of the viscoelastic dampers.

부구조물 합성법을 이용한 슬라이딩 모드 해석 (Sliding Mode Analysis Using Substructure Synthesis Method)

  • 김대관;이민수;한재흥;고태환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.