• Title/Summary/Keyword: Structural Dynamic Model

Search Result 1,842, Processing Time 0.026 seconds

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

Safe landing control of unmanned Quad-rotor Emergency Procedures (긴급 상황에 대비한 무인 쿼드로터의 안전 착륙 제어)

  • Baek, Seung-Jun;Park, Jong-Ho;Ryu, Ji-Hyoung;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2335-2342
    • /
    • 2014
  • If you want to use the unmanned quad rotor for emergency information provision and information about the traffic situation of real-time and moving information is included in the car to help in emergency vehicle operation of the city and in the distribution future innovation the need to consider to have enough safety of the use of silent quad rotor. Therefore, in this study, the unmanned quad rotor system research of safe landing control from the center for the improvement of safety of unmanned quad rotor system you have a motor of four, has taken a good structural balance system based on the dynamic model and motion considering the nonlinear characteristics, and attempts to proceed via non-linearity and system disturbances, tough Fuzzy controller, and analyzed through a computer simulation result.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.

Application of Equivalent Beam Element for Practical Vibration Analysis of Stadium Structure (스타디움 구조물의 실용적인 진동해석을 위한 등가보요소의 적용)

  • Kim, Gee-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.91-99
    • /
    • 2004
  • In general, stadium structure with long span has low inherent natural frequency. In the stadium structure, structural behavior similar to resonance can be occurred easily by spectator rhythmical movements of which exciting period is small comparatively. It is required to investigate the safety and the serviceability of stadium structure. Therefore, there exists a necessity for accurate vibration analysis. Accurate analysis of stadium structure subjected to dynamic load is required for economical construction and safe design of stadium structure. Stadium structure should be modeled by refined mesh for accurate vibration analysis. As the mesh of stadium structure is refined, the number of divided elements increases in numerical analysis. The number of node is increased and numerous computer memories or computational time are required. So it is very difficult to analyze refine model of stadium structures by using the commercial programs. It is possible to efficient vibration analysis of stadium structure by finite element modeling method using equivalent beam element proposed in this paper, because the number of nodes is decreased remarkably.

Vibration Analysis for Infinite Length Waveguide Structures Connected with Finite Length Structures Using Impedance Coupling (유한 길이 구조물과 무한 길이 도파관 구조물의 임피던스 연성을 이용한 진동 해석)

  • Ryue, Jungsoo;Lee, Jaehong;Hong, Chinsuk;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.360-370
    • /
    • 2015
  • In case that an infinite length waveguide structure is connected with a finite length structure, it is required to combine a wave approach for the waveguide structure and a modal approach for the finite length structure to investigate the dynamic response of the connected target structure. In this study, the wavenumber finite element (WFE) analysis is adopted for the infinite length waveguide substructure and a finite element (FE) method is applied for the finite length substructure and then their results are coupled in terms of the impedance or mobility at the connected points between the substructures. As a structural model, an infinite length cylindrical shell with a rectangular plate inside is regarded. These two substructures are connected at the four corner points of the plate, rigidly or resiliently. From this investigation, it was confirmed that the wave approach (WFE method) and modal approach (FE method) can be combined by the impedance coupling.

A Study on Reliability Design of Fracture Mechanics Method Using FEM (유한요소법을 이용한 파괴 역학적 방법의 신뢰성설계기술에 관한 연구)

  • Baik, Seung-Yeb;Lee, Bong-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4398-4404
    • /
    • 2015
  • Stainless steel sheets are widely used as the structural material for dynamic machine structures, These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding, For fatigue design of gas welded joints such as various type joint. It is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. Thus in this paper, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, ${\Delta}P-N_f$ curves were rearranged in the ${\Delta}{\sigma}-N_f$ relation with the hot spot stresses at the gas welded joints. Using these results, the accelerated life test(ALT) is conducted. From the experiment results, an life prediction model is derived and factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Some Critical Problems in Seismic Design of High-Rise RC Building frame Systems (고층 RC 건물골조시스템의 내진설계상 몇 가지 주요 문제점)

  • Lee Han-Seon;Jeong Seong-Wook;Ko Dong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.727-734
    • /
    • 2005
  • High-rise residential buildings these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio, and deformation compatibility requirements of frames. The comparative study for these issues by appling KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on engineer's Interpretation and application of code requirements. And a building frame system can be noneconomical, compared with the dual system, because of higher demands on strength or ductility in both frames and shear walls.

A Study on the Thermal Environment Evaluation of 'Hanok' considering Solid Model of Building Elements (한옥의 건축요소 솔리드 모델링을 통한 열환경 평가에 관한 연구)

  • Park, Tong-So;Sheen, Dong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.955-961
    • /
    • 2013
  • This study aimed for the scientific approach of Korean traditional house, so called Hanok, by analyses of structural elements and thermal environmental performance. Hanok is a very unique vernacular architectural style of the Middle East Asia that fits with climate conditions of the Korean Peninsular, designed to withstand high temperature and humidity in summer and cold and dry in winter seasons. In order to evaluate thermal environment of Hanok, its sectional structure such as floor, wall, roof structure and Ondol which is Korean traditional floor heating system, was built in 3D, as well as heat transfer mechanism of its composing elements was analyzed through 3 dimensional steady state analysis. The results of the thermal environmental performance of Hanok will be used as a basic datum of design guidelines for accomplishing ecologic housing fitted with local climate.

Piezoelectric Energy Harvesting from Bridge Vibrations under Railway Loads (철도하중에 의한 교량 진동을 이용한 압전 에너지 수확)

  • Kwon, Soon-Duck;Lee, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.287-293
    • /
    • 2011
  • This paper investigates the applicability of a piezoelectric cantilever for energy supply of wireless sensor node used in structural health monitoring of bridges. By combining the constitutive equation of piezoelectric material and the dynamic equation of cantilever structure, the coupled governing equation for cantilever equipped piezoelectric patches has been addressed in matrix form. Forced excitation tests were carried out to validate the numerical model and to investigate the power output characteristics of the energy harvester. From the numerical simulation based on the measured bridge accelerations under KTX, Saemaul, Mugunghwa trains, the peak powers generated from the device were found to be 28.5 mW, 0.65 mW, 0.51 mW respectively. It is revealed from the results that bridge vibrations caused by moving loads is not a practical source for energy harvesting because of its low acceleration level, low frequency and short duration.