• Title/Summary/Keyword: Structural Dynamic Model

Search Result 1,842, Processing Time 0.027 seconds

An Exploratory Study on the Structural Relationships among Meaningfulness of work, Big 5 character-types and Job Stress (직무 의미감, Big 5 성격유형, 직무스트레스의 구조적 관계에 관한 탐색적 연구)

  • Baek, You-Sung
    • Management & Information Systems Review
    • /
    • v.36 no.5
    • /
    • pp.85-98
    • /
    • 2017
  • The purpose of this study is to exploratory examine the structural relationships among meaningfulness of work, personality(Big 5 character-types) and job stress. To conduct such examination, the author (i) designated meaningfulness of work, personality(Big 5 character-types) and job stress as variables and (ii) designed a research model by conducting preceding studies on the variables. To examine the research model the author collected the survey data from the residents in Kyoungsangbuk-do, 332 copies of questionnaire. Collected data were analyzed using SPSS and AMOS programs. The analysis results are as follows. Especially, (1) the meaningfulness of work had a positive effect on agreeableness, conscientiousness, and extraversion. (2) the meaningfulness of work had a negative effect on neuroticism. (3) the meaningfulness of work had no effect on openness to experience. (4) the neuroticism factor had a positive effect on psychological job stress and physical job stress. (5) the openness to experience had a negative effect on psychological job stress and physical job stress. (6) the meaningfulness of work had no effect on psychological job stress and physical job stress. The implications and limitation which this study are as follows. First, this study has discovered that there was statistically significant relationship between the meaningfulness of work and Big 5 character-types. Second, Big 5 character-types(neuroticism, openness to experience) had statistically effect on psychological job stress and physical job stress. This study have limitation in that was conducted based on cross-sectional design of research. Because, the mechanism of job stress is a dynamic process.

Time-Varying Effects of Oil Shocks on the Korean Economy (한국경제에 미치는 유가충격의 시간-가변적 효과에 관한 연구)

  • Cha, Kyungsoo
    • Environmental and Resource Economics Review
    • /
    • v.27 no.3
    • /
    • pp.495-520
    • /
    • 2018
  • Because of structural changes in the international oil market and the economy, it is widely recognized that the impact of oil shocks on the economy has weaken since the mid-1980s. This study tries to examine the validity of the recent perception about the relationship between oils shocks and the economy, estimating the time-varying effects of oil shocks on the Korean economy. The results show that the dynamic effects of oil shocks normalized to a one standard deviation has been relatively constant, in contrast to the recent perception and a number of existing studies. In addition, because the shape of impulse response functions at each point in time spanning from 1984:II to 2017:IV has not been changed significantly, it seems that the propagation mechanism of oil shocks also has not been substantially altered. These findings indicate that even though structural changes of the economy, such as the reduction in the share of oil consumption and the spread of high-efficiency energy technologies, have been rapidly progressed, it is not still enough to offset the negative effects of oil shocks. Rather, it seems that the recent perception about the shrinking effects of oil shocks is mainly due to the assumptions that do not reflect changes in the size of oil shocks. In particular, this problem appears more pronounced in the case of the typical a one standard deviation increase oil shock under homoskedasticity assumption, which is widely adopted in the most VAR analyses. Therefore, in estimating the effects of oil shocks on the economy, it is important to specify the correct model and normalization method, to reflect changes in the size of oil shocks.

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

A Study on the Effects of Nuclear Power Plant Structure-Component Interaction in Component Seismic Responses (원전 구조물-기기 상호작용이 기기 지진응답에 미치는 영향 연구)

  • Kwag, Shinyoung;Eem, Seunghyun;Jung, Kwangsub;Jung, Jaewook;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.83-91
    • /
    • 2022
  • Seismic design and analysis of nuclear power plant components are performed based on an decoupled model. However, this decoupled analysis has a limitation in that it generates inaccurate results compared to the coupled analysis because it cannot simulate actual phenomena such as the interaction between structures and components. Thus, this study performed seismic coupled and decoupled analysis on an existing nuclear containment structure and related components, considering the mass and natural frequency ratios. And based on these results, comparative analyses of responses of components were conducted. Consequently, the seismic coupled analysis result generally gave a smaller value than the decoupled analysis result. These results were similar to the analysis results for the simple coupled model, which was an existing study, but the difference in component responses was much more pronounced. Also, this was influenced by the installation location of the component rather than the influence of the input frequency of the input seismic motions. Finally, the difference between the decoupled and coupled seismic analysis occurred in the region where the mass ratio of the components was large, and the natural frequencies were almost similar due to the considerable dynamic interaction between the structure and the component in this realm.

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis (동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Dongchan;Kim, Jongkwan;Ha, Ik-Soo;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.45-65
    • /
    • 2022
  • In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

Folding Analysis of Paper Structure and Estimation of Optimal Collision Conditions for Reversal (종이구조물의 접기해석과 반전을 위한 최적충돌조건의 산정)

  • Gye-Hee Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.213-220
    • /
    • 2023
  • This paper presents a model simulating the folding process and collision dynamics of "ddakji", a traditional Korean game played using paper tiles (which are also referred to as ddakji). The model uses two A4 sheets as the base materials for ddakji. The folding process involves a series of boundary conditions that transform the wing part of the paper structure into a twisted configuration. A rigid plate boundary condition is also adopted for squeezing, establishing the shape and stress state of the game-ready ddakji through dynamic relaxation analysis. The gaming process analysis involves a forced displacement of the striking ddakji to a predetermined collision position. Collision analysis then follows at a given speed, with the objective of overturning the struck ddakji--a winning condition. A genetic algorithm-based optimization analysis identifies the optimal collision conditions that result in the overturning of the struck ddakji. For efficiency, the collision analysis is divided into two stages, with the second stage carried out only if the first stage predicts a possible overturn. The fitness function for the genetic algorithm during the first stage is the direction cosine of the struck ddakji, whereas in the second stage, it is the inverse of the speed, thus targeting the lowest overall collision speed. Consequently, this analysis provides optimal collision conditions for various compression thicknesses.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm

  • Hoa, Tran N.;Khatir, S.;De Roeck, G.;Long, Nguyen N.;Thanh, Bui T.;Wahab, M. Abdel
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.487-499
    • /
    • 2020
  • This paper proposes a novel approach to model updating for a large-scale cable-stayed bridge based on ambient vibration tests coupled with a hybrid metaheuristic search algorithm. Vibration measurements are carried out under excitation sources of passing vehicles and wind. Based on the measured structural dynamic characteristics, a finite element (FE) model is updated. For long-span bridges, ambient vibration test (AVT) is the most effective vibration testing technique because ambient excitation is freely available, whereas a forced vibration test (FVT) requires considerable efforts to install actuators such as shakers to produce measurable responses. Particle swarm optimization (PSO) is a famous metaheuristic algorithm applied successfully in numerous fields over the last decades. However, PSO has big drawbacks that may decrease its efficiency in tackling the optimization problems. A possible drawback of PSO is premature convergence leading to low convergence level, particularly in complicated multi-peak search issues. On the other hand, PSO not only depends crucially on the quality of initial populations, but also it is impossible to improve the quality of new generations. If the positions of initial particles are far from the global best, it may be difficult to seek the best solution. To overcome the drawbacks of PSO, we propose a hybrid algorithm combining GA with an improved PSO (HGAIPSO). Two striking characteristics of HGAIPSO are briefly described as follows: (1) because of possessing crossover and mutation operators, GA is applied to generate the initial elite populations and (2) those populations are then employed to seek the best solution based on the global search capacity of IPSO that can tackle the problem of premature convergence of PSO. The results show that HGAIPSO not only identifies uncertain parameters of the considered bridge accurately, but also outperforms than PSO, improved PSO (IPSO), and a combination of GA and PSO (HGAPSO) in terms of convergence level and accuracy.

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF

A Biomechanical Modeling of Human Pharyngeal Muscular Dysfunction by Using FEM(Finite Element Method) (유한요소법을 이용한 인두의 기능이상에 대한 생체역학적 모델)

  • Kim Sung Jae;Bae Ha Suk;Choi Byeong Cheol;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.515-522
    • /
    • 2003
  • Pharynx is a system transporting foods by peristaltic motion(contraction and expansion movement! into the esophagus and functioning as airway passages. In this study, structural changes of pharyngeal dysfunction are analyzed by biomechanical model using CT and FEM(finite clement method). Loading condition was assumed that equal pressure was loaded sequentially to inside of pharyngeal tissue. In order to analyze the pharyngeal muscular dysfunction by biomechanical model. the pharyngeal dysfunctions was classified into 3 cases. Taking into account the clinical complication by neuromuscular symptoms such as pharyngeal dysfunction after stroke. we assumed that a change of material property is caused by muscular tissue stiffness. A deformation of cross sectional area of the pharynx is analyzed increasing the stiffness $25\%,\;50\%,\;75\%$ in each case on the basis of stress-strain relationship. Based on three-dimensional reconstruction of pharyngeal structure using limited factor - techniques and the optimization procedure by means of inverse dynamic approach. the biomechanical model of the human pharynx is implemented. The results may be used as clinical index illustrating the degree of pharyngeal muscular dysfunction. This study may be used as useful diagnostic model in discovering early deglutitory impediment caused by physiological or pathological pharyngeal dysfunction.