• Title/Summary/Keyword: Structural Design Tool

Search Result 487, Processing Time 0.022 seconds

Shell Finite Element Based on B-Spline Representation for Finite Rotations (B-Spline 곡면 모델링을 이용한 기하비선형 쉘 유한요소)

  • 노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.429-436
    • /
    • 2003
  • A new linkage framework between elastic shell element with finite rotation and computar-aided geometric design (CAGD) (or surface is developed in the present study. The framework of shell finite element is based on the generalized curved two-parametric coordinate system. To represent free-form surface, cubic B-spline tensor-product functions are used. Thus the present finite element can be directly linked into the geometric modeling produced by surface generation tool in CAD software. The efficiency and accuracy of the Previously developed linear elements hold for the nonlinear element with finite rotations. To handle the finite rotation behavior of shells, exponential mapping in the SO(3) group is employed to allow the large incremental step size. The integrated frameworks of shell geometric design and nonlinear computational analysis can serve as an efficient tool in shape and topological design of surfaces with large deformations.

  • PDF

Reliability-Based Optimization of Continuous Steel Box Girder Bridges (신뢰성에 기초한 강상형 연속교의 단면 최적설계)

  • 조효남;이두화;정지승;민대홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.145-154
    • /
    • 1997
  • The results of optimum design by the deterministic approach adopted in the current design codes depend upon the safety levels of the applied code. But, it is now generally recognized that structural problems are nondeterministic and, consequently, that engineering optimum design must cope with uncertainties. Therefore, it is not an overstatement to affirm that the combination of reliability-based design procedures and optimization techniques is the only means of providing a powerful tool to obtain a practical optimum design solution. In the paper, reliability based optimum design procedure as a rational approach to optimum structural design is presented. The design constraints are formulated based on the ASD, LRFD and reliability theories. The reliability analysis is based on an advanced first-order second moment approach. Uncertainties in the structural strength and loading due to inherent variability as well as modeling and prediction errors are included in failure due to combined bending and shear. For the realistic reliability-based optimization of continuous steel box girder bridges, interactive non-linear limit state model is formulated based on the von Mises's combined stress yield criterion. Comparative results are presented when the ASD criteria are used for the optimum design of a structure under reliability constraints. In addition, this study comparatively shows the results of the optimum design for various criteria of design codes.

  • PDF

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

Representation of Knowledge in K-CLIPS - Expert System Development Tool (전문가시스템도구인 K-CLIPS에서의 지식표현)

  • 최창근;백종균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.71-76
    • /
    • 1989
  • Structural design, generally engineering design, is a complex process combinding design knowledges and analysis techniques. While analysis techniques can be automated in an algorithmic fashion, relatively little work has been done in the area of the design automation. An effect approach method for the automation of the engineering design may be a hybrid system, in which design knowledges, specification requirements and interpretations are represented using an expert system methodology and numerically intensive operations of the design process are implemented using an algorithmic language such as FORTRAN. The purpose of this paper is concentrated on the knowledge of K-CLIPS(KAIST-C Language Integrated Production System) used to design and implement this hybrid system. In K-CLIPS, some representation methods : frame, production rule, fact and user defined function are used to construct the knowledge base. The hierarchical knowledges could be expressed more naturally with a little number of rules than other plain production systems.

  • PDF

A Study on Improvement of 100 Tons Toggle Injection Molding Machine's Weight Using Numerical Analysis (수치해석을 이용한 토글식 100톤 사출성형기의 중량 개선에 관한 연구)

  • Han, Seong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4713-4718
    • /
    • 2013
  • Nowadays, three-dimensional computer added design(3D CAD) tool are widely and actively used for design of mechanical machine. Because using the tool is more effective to understand design concept and to collaborate with other operation than using two-dimensional design tool. In this study, the 3D CAD tool which is called I-DEAS was applied for three-dimensional modeling of main parts and assembling of modeled parts for identification the entire shape of a injection molding machine. In addition, a study was also performed regarding reduction for the weight of main plates for saving production cost and energy in the machine. A finite element method(FEM) program in I-DEAS tool was used for the improvement study. First, the current main plates were structural analysed and then the plate deformations, weak regions and stress distributions were graped. By the FEM results, the 2nd improved designing of the plates was conducted such as reinforcement or slimming of the plate wall thickness. The 2nd structural FEM was performed for verification of the redesigned plates and then the FEM results were compared with the 1st FEM's result. The weight of the main plates were averagely reduced approximately 3 - 7%. By these results, it was seemed that the improved plates have a useful availability.

Multi-step design optimization of a high speed machine tool structure using a genetic algorithm with dynamic penalty (동적 벌점함수 유전 알고리즘과 다단계 설계방법을 이용한 공작기계 구조물의 설계 최적화)

  • 최영휴;배병태;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.108-113
    • /
    • 2002
  • This paper presents a multi-step structural design optimization method fur machine tool structures using a genetic algorithm with dynamic penalty. The first step is a sectional topology optimization, which is to determine the best sectional construction that minimize the structural weight and the compliance responses subjected to some constraints. The second step is a static design optimization, in which the weight and the static compliance response are minimized under some dimensional and safety constraints. The third step is a dynamic design optimization, where the weight static compliance, and dynamic compliance of the structure are minimized under the same constraints. The proposed design method was examined on the 10-bar truss problem of topology and sizing optimization. And the results showed that our solution is better than or just about the same as the best one of the previous researches. Furthermore, we applied this method to the topology and sizing optimization of a crossbeam slider for a high-speed machining center. The topology optimization result gives the best desirable cross-section shape whose weight was reduced by 38.8% than the original configuration. The subsequent static and dynamic design optimization reduced the weight, static and dynamic compliances by 5.7 %, 2.1% and 19.1% respectively from the topology-optimized model. The examples demonstrated the feasibility of the suggested design optimization method.

  • PDF

Development of a Basic Structure Design System for Machine Tools by Modular Construction Method (모듈러 구성법을 이용한 공작기계의 기본 구조설계 시스템 개발)

  • 임동휘;김석일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.136-143
    • /
    • 2000
  • The appearance of new machine tools with higher flexibility is in need of a basic structure design system for establishing the systematic and rationalized design and manufacturing procedures. In this study. the basic structure design system for machine tools is realized based on the modular construction method. Machine tools are represented as a whole and modular complex with the directed graph, and all possible structural configurations and codes of machine tools for satisfying the machining requirement are derived from the DNA data and connecting patterns of basic structural elements. Especially the structural configurations of machine tools are visualized by the solid modeling techniques and 3-D graphics techniques.

  • PDF

Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures (모멘트-저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용)

  • 이한선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.51-58
    • /
    • 1989
  • Through a series of analyses of specific structures it is shown that incremental collapse may be the critical design criterion and that shakedown analysis can be used as a design tool. Using shakedown analysis technique, a nonlinear structural optimization program has been developed. This incorporates : (ⅰ) design constraints on elastic stresses and deflections ; (ⅱ) constraints for the prevention of incremental collapse and soft story failure ; and (ⅲ) the constraint on the fundamental period of structure. A five-step design procedure is proposed by using this program to obtain the optimum design that satisfies all the requirements of comprehensive earthquake-resistant design.

  • PDF

Use of Shakedown Analysis Technique in Optimum Seismic Design of Moment-Resisting Steel Structures (모멘트 - 저항 철골구조물의 최적내진설계에 있어서의 Shakedown 해석기법의 응용)

  • 이한선
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.99-109
    • /
    • 1989
  • Through a series of analyses of specific structures it is shown that incremental collapse may be the critical design criterion and that shakedown analysis can be used as a design tool. Using shakedown analysis technique, a nonlinear structural optimization program has been developed. This incorporates: (i) design constraints on elastic stresses and deflections: (ii) constraints for the prevention of incremental collapse and soft story failure: and (iii) the constraint on the fundamental period of structure. A five-step design procedure is proposed by using the program to obtain the optimum design that satisfies all the requirements of comprehensive earthquake-resistant design.

  • PDF

Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations (마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계)

  • Jang, Sung-Hyun;Kwon, Bong-Chul;Choi, Young-Hyu;Park, Jong-Kweon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.