• Title/Summary/Keyword: Structural Damping

Search Result 1,221, Processing Time 0.021 seconds

Comparative Studies between Prediction for a Building Structure with MR Damper using Linearization Technique and Experimental System Identification (선형화 기법에 기반한 MR 감쇠기가 설치된 건물의 동적모델 예측과 시스템식별 실험결과의 비교연구)

  • 이상현;민경원;이명규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.323-330
    • /
    • 2004
  • The purpose of this paper is to experimentally identify the finite element (FE) model of a building structure with magnetorheological (MR) fluid damper. Using FE model based system identification (FEBSI) technique, The model of MR damper having nonlinear characteristics is expressed with equivalent linear properties such as mass, stiffness, and damping. Bingham model is used for MR damper modeling. The equivalent stiffness and damping matrices of MR damper are predicted by applying an equivalent linearization technique, and those values are compared with the experimentally obtained ones.

  • PDF

Experimental Verification of Semiactive Control Systems for Stay Cable Vibration (케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가)

  • 장지은;정형조;정운;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.52-59
    • /
    • 2004
  • In this paper, the efficacy of the MR damper-based control systems for vibration suppression of stay cables has been experimentally investigated. The performance of the several control strategies for the semiactive control system, such as the clipped-optimal control, the Lyapunov stability theory-based control, the maximum energy dissipation and the modulated homogeneous friction, has been compared with that of the passive-type control systems employing MR dampers. To do this, the full-scale stay cable, which is the same as used for the in-service cable-stayed bridge in Korea, is considered. The acceleration and the displacement of the stay cable as well as the damping force of the MR damper are measured. The velocity of the cable at the damper location, which is needed for some control algorithms, is obtained by differentiating the measured displacement. The damping ratios of the cable system employing the MR damper, which can be estimated by the Hilbert transform-based method, shows effectiveness of each control strategy considered.

  • PDF

Vibration and Dynamic Stability of Pipes Conveying Fluid on Elastic Foundations

  • Ryu, Bong-Jo;Ryu, Si-Ung;Kim, Geon-Hee;Yim, Kyung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2148-2157
    • /
    • 2004
  • The paper deals with the vibration and dynamic stability of cantilevered pipes conveying fluid on elastic foundations. The relationship between the eigenvalue branches and corresponding unstable modes associated with the flutter of the pipe is thoroughly investigated. Governing equations of motion are derived from the extended Hamilton's principle, and a numerical scheme using finite element methods is applied to obtain the discretized equations. The critical flow velocity and stability maps of the pipe are obtained for various elastic foundation parameters, mass ratios of the pipe, and structural damping coefficients. Especially critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place, are precisely determined. Finally, the flutter configuration of the pipe at the critical flow velocities is drawn graphically at every twelfth period to define the order of the quasi-mode of flutter configuration.

Dynamic Analysis of Viscoelastic Composite Thin-Walled Blade Structures (점탄성-복합재 박판 블레이드 구조물의 진동 해석)

  • Shin, Jae-Hyun;Na, Sung-Soo;Park, Chul-Hue
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1684-1689
    • /
    • 2003
  • This paper concerns the analytical modeling and dynamic analysis of advanced cantilevered blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias. The case of VEM spreaded over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergisitic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.

An Experimental Study on the Structural Stiffness and Damping of Self-Acting Compliant Foil Journal Bearings (범프 포일 베어링들의 동적 계수에 관한 연구)

  • 이용복;김태호;김창호;이남수;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.282-289
    • /
    • 2001
  • Experiments were conducted to determine the structural dynamic characteristics of bump foil bearing. The housing of the bearing on the journal was driven by two shakers which were used to simulate dynamic forces acting on the bump foil strips. Three different bump foils(Cu-coated bump, silicon bump, viscoelastic bump) are tested and the dynamic coefficients of three bump foils compared, based on the experimental measurements for a wide range of operating conditions. From the test results, the high damping coefficients of viscoelastic bump are achieved and the possibility of the super-bending-critical operation is suggested.

  • PDF

Solution of Eigenproblems for Non-proportional Damping Systems by Lanczos Method (Lanczos 방법에 의한 비비례 감쇠 시스템의 고유치 해석)

  • 김만철;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.283-290
    • /
    • 1998
  • A solution method is presented to solve the eigenproblem arising in tile dynamic analysis of non-proportional damping systems with symmetric matrices. The method is based on tile use of Lanczos method to generate a Krylov subspace of trial vectors, witch is then used to reduce a large eigenvalue problem to a much smaller one. The method retains the η order quadratic eigenproblem, without the need to the method of matrix augmentation traditionally used to cast the problem as a linear eigenproblem of order 2n. In the process, the method preserves tile sparseness and symmetry of the system matrices and does not invoke complex arithmetics, therefore, making it very economical for use in solving large problems. Numerical results are presented to demonstrate the efficiency and accuracy of the method.

  • PDF

Vibration Analysis of Building Floor Subjected to Walking Loads (보행하중을 받는 건축물 바닥판의 진동해석)

  • 김기철;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.414-421
    • /
    • 2001
  • Recently, the damping effect of building structures are greatly reduced because the use of non-structures members as like curtain wall are decreased and large open space are in need for the service of buildings. Assembly and office buildings with a lower natural frequency have a higher possibility of experiencing excessive vibration induced by human activities as like jumping, running and walking. These excessive vibration make the occupants uncomfortable and the serviceability deterioration. The common method of application of walking loads for the vibration analysis of structures subjected to walking loads is to inflict a series unit walking load and a periodic function at a node. But this method could not consider the moving effect of walking. In this study, natural frequency and damping ratio of plate structure are evaluated by heel drop tests. And new application of equivalent walking loads are introduced for vibration analysis of real slab system subjected to walking loads. The response obtained from the numerical analysis are compared well to the results measured by experimental tests. It is possible to efficiently analyze the vibration of floor which is subjected to walking loads by applying equivalent walking loads.

  • PDF

A Study on the Characteristics of Dynamic Behavior of Single Layer Latticed Domes with Laminated Rubber Bearing (적층고무받침이 설치된 단층 래티스 돔의 동적 거동 특성에 관한 연구)

  • 한상을;배상달
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.425-432
    • /
    • 2001
  • This paper presents the studies of the characteristics of dynamic behavior of single layer latticed domes with laminated rubber bearing and establishes the effectiveness of the system. The base isolation system installed between base and structures reduces the responses due to earthquake motions and increases the natural period of structures. Numerical analysis is carried out using modal superposition method and Newmark-βmethod which is linear acceleration method with (equation omitted) : 1/2 and β : 1/6. The time interval Δt for response calculation is 0.001 sec. Damping ratio is 2 % as Rayleigh damping and El Centro NS(1940) as earthquake motion is the input excitation data. The acceleration response of dome with base isolation is reduced to 30 % of the response of non-isolation system. From the results of the numerical studies on the models, it is confirmed that base isolation system effectively suppresses the responses of the domes subjected to horizontal earthquakes.

  • PDF

Development of Cable Exciting Robot for Estimating Dynamic Properties of Stay Cables (사장교 케이블의 동특성 추정을 위한 케이블 가진 로봇의 개발)

  • Lee, Jong-Jae;Kim, Jae-Min;Ahn, Sang-Sup;Choi, Jun-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.39-42
    • /
    • 2007
  • It is necessary to estimate the dynamic characteristics of stay cables ie., the natural frequencies and the damping ratios of the stay cables to design cable damper for appropriate mitigation of cable vibrations and/or to estimate the tension of cables in service. In this study, a cable exciting robot for evaluating dynamic characteristics of stay cables has been developed, and the feasibility of the developed system has been demonstrated through a field test on the stay cable installed at the test yard of Highway and Transportation Technology Institute (HTTI). The dynamic characteristics of the stay cable were estimated based on acceleration data as well as displacement measured by digital image processing technique.

  • PDF