• Title/Summary/Keyword: Structural Concrete

Search Result 7,027, Processing Time 0.033 seconds

Implications of yield penetration on confinement requirements of r.c. wall elements

  • Tastani, Souzana P.;Pantazopoulou, Stavroula J.
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.831-849
    • /
    • 2015
  • Seismic-design procedures for walls require that the confinement in the critical (plastic hinge) regions should extend over a length in the compression zone of the cross section at the wall base where concrete strains in the Ultimate Limit State (ULS) exceed the limit of 0.0035. In a performance-based framework, confinement is linked to required curvature ductility so that the drift demand at the performance point of the structure for the design earthquake may be met. However, performance of flexural walls in the recent earthquakes in Chile (2010) and Christchurch (2011) indicates that the actual compression strains in the critical regions of many structural walls were higher than estimated, being responsible for several of the reported failures by toe crushing. In this study, the method of estimating the confined region and magnitude of compression strain demands in slender walls are revisited. The objective is to account for a newly identified kinematic interaction between the normal strains that arise in the compression zone, and the lumped rotations that occur at the other end of the wall base due to penetration of bar tension yielding into the supporting anchorage. Design charts estimating the amount of yield penetration in terms of the resulting lumped rotation at the wall base are used to quantify the increased demands for compression strain in the critical section. The estimated strain increase may exceed by more than 30% the base value estimated from the existing design expressions, which explains the frequently reported occurrence of toe crushing even in well confined slender walls under high drift demands. Example cases are included in the presentation to illustrate the behavioral parametric trends and implications in seismic design of walls.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Tensile strength evaluation of SFRC subjected to high temperature using double punch test (DPT 실험을 이용한 고온노출된 강섬유보강콘크리트의 인장강도 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil;Kim, Hee-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Steel fiber-reinforced concrete (SFRC) is widely used for tunnel lining structure such as shot-crete in NATM tunnel and segment in TBM tunnel. In tunnel fire accidents, structural performance of a lining is very important because the lining is the structure that directly exposed to fire. In this study, the effects of high temperatures, mix ratios and types on failure pattern, DPT tensile strength and coefficient of variation were investigated through Double Punch Tests (DPT) of SFRC subjected to high temperatures. In the results, it is confirmed that the residual DPT tensile strength increases as for SFRC and this is more in SFRC with higher mix ratio. But, the equation for evaluation of DPT tensile strength does not involve the number of failure surfaces SFRC specimens subjected to high temperatures, therefore, it is required to investigate more fracture energy in DPT tests.

Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading

  • Mohammadi, Masoud;Kafi, Mohammad A.;Kheyroddin, Ali;Ronagh, Hamid R.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.163-177
    • /
    • 2020
  • Concentrically Braced Frames (CBFs) are commonly used in the construction of steel structures because of their ease of implementation, rigidity, low lateral displacement, and cost-effectiveness. However, the principal disadvantage of this kind of braced frame is the inability to provide deformation capacity (ductility) and buckling of bracing elements before yielding. This paper aims to present a novel Composite Buckling Restrained Fuse (CBRF) to be utilized as a bracing segment in concentrically braced frames that allows higher ductility and removes premature buckling. The proposed CBRF with relatively small dimensions is an enhancement on the Reduced Length Buckling Restrained Braces (RL-BRBs), consists of steel core and additional tensile elements embedded in a concrete encasement. Employing tensile elements in this composite fuse with a new configuration enhances the energy dissipation efficiency and removes the tensile strength limitations that exist in bracing elements that contain RL-BRBs. Here, the optimal length of the CBRF is computed by considering the anticipated strain demand and the low-cyclic fatigue life of the core under standard loading protocol. An experimental program is conducted to explore the seismic behavior of the suggested CBRF compare with an RL-BRB specimen under gradually increased cyclic loading. Moreover, Hysteretic responses of the specimens are evaluated to calculate the design parameters such as energy dissipation potential, strength adjustment factors, and equivalent viscous damping. The findings show that the suggested fuse possess a ductile behavior with high energy absorption and sufficient resistance and a reasonably stable hysteresis response under compression and tension.

Introduction of sand marble wastes in the composition of mortar

  • Hebhoub, H.;Belachia, M.;Djebien, R.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.491-498
    • /
    • 2014
  • During the past years, the protection of the environment has become a major concern out passing the state frontiers to reach a planetary dimension. Depository waste sites have become a serious problem in terms of their locations and costs. On the other hand, the construction industry has a leading place in terms of quantities of waste produced from the start to the end of each construction site, by the large amounts of raw materials used and their respective consequences on the environment. The recycling of quarry wastes products, of demolished concrete, bricks and large quantities of waste resulting from the transformation of marble blocks can provide ideal solutions and advantages for the preservation of the environment, to become a supplementary source of aggregates. The main purpose of this study is to show technically the possibility of recuperating the aggregates of marble wastes as a partial substitute or total in the mortars. The aggregates used in this study is a sand of marble wastes (excess loads of sand exposed to bad weather conditions) of the quarry derived from Fil-fila marble (Skikda, east of Algeria). To achieve this work, we have studied the effect of sand substitution of marble wastes in the mortar with rates of (25, 50, 75, 100%); comparing the results obtained with reference samples (0%), the properties when the samples are fresh, and the mechanical performances of mortars at solid state (loss and gain of weight, dimensional variations). The introduction of recycled sand in the mortars gives good results and can be used as granulates.

Elasto-plastic time history analysis of an asymmetrical twin-tower rigid-connected structure

  • Wu, Xiaohan;Sun, Yanfei;Rui, Mingzhuo;Yan, Min;Li, Lishu;Liu, Dongze
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.211-228
    • /
    • 2013
  • The structure analyzed in this paper has particular building style and special structural system. It is a rigid-connected twin-tower skyscraper with asymmetrical distribution of stiffness and masses in two towers. Because of the different stiffness between the north and the south towers, the torsion seismic vibration is significant. In this paper, in order to study the seismic response of the structure under both frequent low-intensity earthquakes as well as rare earthquakes at the levels of intensity 7, the analysis model is built and analyzed with NosaCAD. NosaCAD is an nonlinear structure analysis software based on second-development of AutoCAD with ObjectARX. It has convenient modeling function, high computational efficiency and diversity post-processing functions. The deformations, forces and damages of the structure are investigated based on the analysis. According to the analysis, there is no damage on the structure under frequent earthquakes, and the structure has sufficient capacity and ductility to resist rare earthquakes. Therefore the structure can reach the goal of no damage under frequent earthquakes and no collapse under rare earthquakes. The deformation of the structure is below the limit in Chinese code. The time sequence and distribution of damages on tubes are reasonable, which can dissipate some dynamic energy. At last, according to forces, load-carrying capacity and damage of elements, there are some suggestions on increasing the reinforcement in the core tube at base and in stiffened stories.

Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake

  • Zandi, Yousef;Shariati, Mahdi;Marto, Aminaton;Wei, Xing;Karaca, Zeki;Dao, Duy Kien;Toghroli, Ali;Hashemi, Mir Heydar;Sedghi, Yadollah;Wakil, Karzan;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.439-447
    • /
    • 2018
  • The structural behaviors of cylindrical barns as a specific engineering structure have been considered as a complicated computing process. The structure design against the earthquake load, to protect by using the code, is an urgency avoiding unexpected damages. The situation has been subjected to the applied design method if there would be no failure across the construction procedures. The purpose of the current study is to clarify the behaviors of cylindrical reinforced concrete barns through the analytic methods across the mass and Lagrangian approaches through the whole outcomes comparison indicating that the isoparametric element obtained from the Lagrangian approach has been successfully applied in the barns earthquake analysis when the slosh effects have been discarded. The form of stress distributions is equal with $s_z$ closed distributions to one another.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

A Study on the Effect of Concrete Strength by Pozzolan and High-early Strength Cement (조강 및 포조란시멘트 의결경화촉진이 콘크리트 강도에 미치는 영향에 관한 연구)

  • 전현우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.3
    • /
    • pp.2677-2684
    • /
    • 1972
  • This study was carried out to search for an effect on strengths of a pozzolan and a high-early strength cements due to accelerating the initial setting and a rate of strength development at early age, and to obtain the effects applicable for structural construction works safety in the cold winter weather. The results of the study were as follows: 1. The early strength of high-early strength cement was higher than an ordinary portland cement(Type I). 2. High-early strength cement had a characteristic suitable for construction works in the cold weather due to the rate of acceleration of the eary strength. 3. When using pozzolan cements, a weight proportion should be considered in mix design since the pozzolan cement has a lower specific gravity than other portland cements. 4. It was desirable for the pozzolan cement to shorten the storage period since particles of the pozzolan cement was so fine that it was likely to weathering.

  • PDF