• 제목/요약/키워드: Structural Analytical Model

검색결과 1,112건 처리시간 0.023초

RC 및 조적조구조물의 비탄성 거동예측을 위한 해석적 모델개발 (Development of Analytical Model to Predict The Inelastic Behavior of Reinforced Concrete And Masonry Structures)

  • 홍원기;이호범;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.160-167
    • /
    • 1993
  • In earthquake structural engineering towards a better understanding of both the earthquake ground motion and structural response, the design of concrete structures to resist strong ground input motions is not a simple matter, and analytical models for such structures must be developed from a design perspective that accounts for the complexities of the structural responses. The primary objective earthquake structural engineering research is to ensure the safety of structures by understanding and improving a design menthodology. Ideally, this would require the development of an analytical model related to a design methodology that ensures a dectile performance. For the accurate assessment of the adequacy of analytically developed model, experiments conducted to study the inplane inelastic cyclic behavior of structures should verify the analytical approach. The paper is to demonstrate experimentally verified analytical method that provide the adequate degree of safety and confidience in the behavior of R.C. structural components and further attempts to extend the developed modeling technique for use by practicing structural engineers.

  • PDF

Analytical and numerical analysis for unbonded flexible risers under axisymmetric loads

  • Guo, Yousong;Chen, Xiqia;Wang, Deyu
    • Ocean Systems Engineering
    • /
    • 제6권2호
    • /
    • pp.129-141
    • /
    • 2016
  • Due to the structural complexity, the response of a flexible riser under axisymmetric loads is quite difficult to determine. Based on equilibrium conditions, geometrical relations and constitutive equations, an analytical model that can accurately predict the axisymmetric behavior of flexible risers is deduced in this paper. Since the mutual exclusion between the contact pressure and interlayer gap is considered in this model, the influence of the load direction on the structural behavior can be analyzed. Meanwhile, a detailed finite element analysis for unbonded flexible risers is conducted. Based on the analytical and numerical models, the structural response of a typical flexible riser under tension, torsion, internal and outer pressure has been studied in detail. The results are compared with experimental data obtained from the literature, and good agreement is found. Studies have shown that the proposed analytical and numerical models can provide an insightful reference for analysis and design of flexible risers.

콘크리트 슬래브의 소성수축균열 해석모델 (A Numerical Model for Plastic Shrinkage Cracking of Concrete Slab)

  • 곽효경;하수준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.448-455
    • /
    • 2005
  • In this paper, an analytical model for estimation of the time at which the concrete surface begins to dry is introduced to predict whether or not plastic shrinkage cracks occur. First of all, the validity of a consolidation model for bleeding of cement paste proposed by Tan et al. is verified by comparing the analytical results with the experimental results, and used to evaluate the rate and amount of bleed water of concrete. Also an analytical model for evaporation of bleed water which considers the effect of the temperature variation of concrete surface due to hydration heat on the evaporation rate is proposed, and the experimental and analytical results are then compared to verify the validity of the introduced model. In advance, the time at which the concrete surface begins to dry is estimated using above two analytical models, and compared with the experimental results about the time at which plastic shrinkage cracks occur. From the comparison, it is verified that the proposed model can predict the occurrence of plastic shrinkage cracking with comparative precision.

  • PDF

선형요소를 사용하여 판넬존 변형을 고려한 해석 모텔 (The Analytical Model Considering the Deformation of Panel Zone with Linear Element)

  • 조소훈;박찬헌;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.293-300
    • /
    • 2004
  • As the structure is taller and its member is larger, the effect of the deformation of Panel zone on the displacement of structure becomes larger. The analysis using the centerline dimensions in the steel moment frame structure can not consider the accurate effect of panel ton And the finite element analysis using infinitesimal solid and shell element is impractical for the total tall building structure. Therefore, this paper proposes the analytical model using linear element in order to be able to evaluate the reasonable deformation of panel zone. the proposed analytical model makes the analysis of the building structure simple and ease because it uses the only linear elements. In addition it can easily incorporate the various parameters affecting the deformation of panel zone. In order to prove the validith of the prosed analytical model, the analysis result using the proposed analytical model is compared with the result using finite element analysis with shell element

  • PDF

Relevance vector based approach for the prediction of stress intensity factor for the pipe with circumferential crack under cyclic loading

  • Ramachandra Murthy, A.;Vishnuvardhan, S.;Saravanan, M.;Gandhic, P.
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.31-41
    • /
    • 2019
  • Structural integrity assessment of piping components is of paramount important for remaining life prediction, residual strength evaluation and for in-service inspection planning. For accurate prediction of these, a reliable fracture parameter is essential. One of the fracture parameters is stress intensity factor (SIF), which is generally preferred for high strength materials, can be evaluated by using linear elastic fracture mechanics principles. To employ available analytical and numerical procedures for fracture analysis of piping components, it takes considerable amount of time and effort. In view of this, an alternative approach to analytical and finite element analysis, a model based on relevance vector machine (RVM) is developed to predict SIF of part through crack of a piping component under fatigue loading. RVM is based on probabilistic approach and regression and it is established based on Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. Model for SIF prediction is developed by using MATLAB software wherein 70% of the data has been used for the development of RVM model and rest of the data is used for validation. The predicted SIF is found to be in good agreement with the corresponding analytical solution, and can be used for damage tolerant analysis of structural components.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.

철근콘크리트 벽체의 초기 균열 거동에 대한 연구 (Estimation of Early-Age Cracking of Reinforced Concrete Walls)

  • 곽효경;하수준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.898-905
    • /
    • 2006
  • In the present paper, for a quantitative assessment of early-age cracking in an RC wall, an improved analytical model is proposed. First of all, a three-dimensional finite element model for the analysis of stresses due to hydration heat and differential drying shrinkage is introduced. A discrete steel element derived using the equivalent nodal force concept is used to simulate reinforcing steels, embedded in a concrete matrix. In advance, to quantitatively calculate the cracking potential, an analytical model that can estimate the post-cracking behavior in an RC tension member is proposed Subsequent comparisons. of analytical results with test results verify that the combined use of both the finite element model for the stress analysis as well as the analytical model for the estimation of the post-cracking behavior in an RC tension member make it possible to accurately predict the cracking ,behavior of RC walls.

  • PDF

접합부 해석모델에 따른 보통모멘트철골골조의 비선헝 응답평가 (The Evaluation of Nonlinear response of the Ordinary Moment Resisting Frames using different analytical joint model)

  • 원학재;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.222-229
    • /
    • 2000
  • The purpose of this study is to evaluate and make a comparison between the Ordinary Moment Resisting Frames using different analytical joint model for the Nonlinear response. For this purpose, 3-story structure was designed according to NEHRP 1994 Guidelines. And the center-line dimension model and model considering panel zone were used as analytical model for the structure. Nonlinear Static Procedure and Nonlinear Dynamic Procedure were used to evaluate seismic capacities and demands. The limitation in FEMA 273 was used as the variable number to predicte seismic demands of OMRFs. This analytical studies were performed with DRAIN-2DX modified by Shan Shi. Using the above results, the performance evaluation and seismic demands of OMRFs shall be performed. Finally NSP and NDP shall be compared.

  • PDF

Analytical model for the prediction of the eigen modes of a beam with open cracks and external strengthening

  • Ovigne, P.A.;Massenzio, M.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.437-449
    • /
    • 2003
  • The aim of this study is to develop an analytical model of a beam with open cracks and external strengthening which is able to predict its modal scheme components (natural frequencies and mode shapes). The model is valid as far as the excitation level is low enough not to activate non linear effects. The application field of the model are either the prediction of the efficiency of the reinforcement or the non destructive assessment of the structural properties. The degrees of freedom associated to the fault lips must be taken into account in order to introduce the effect of the external strengthening. In a first step, an analytical formulation of a beam with thin notches is proposed according to the references. The model is then extended to incorporate the strengthening consisting in a longitudinal stiffness applied in the vicinity of the cracks. In a second step, the analytical results are compared with these obtained from a finite element simulation.

철근콘크리트와 철골조로 이루어진 혼합구조보의 비선형 이력거동에 관한 연구 (Nonlinear hysteretic behavior of hybrid beams consisted of reinforced concrete and steel)

  • 이은진;김욱종;문정호;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes an analytical study on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. Two types of analytical model, Polygonal Model[PM] and Hybrid Model[HM], were used to represent the nonlinear hysteretic behavior PM used three parameters, HM used an additional parameter to consider the initial stiffness reduction. The parameters calibrated comparing the hysteretic performance obtained from experiments. The purpose of this study is to develop an analytical model which can take into account the initial stiffness reduction of the hybrid members and to represent exactly the hysteretic performance for the hybrid structures with RC and steel. The analytical study showed PM tends to overestimate initial stiffness and strength. However, HM which is capable to consider the initial stiffness reduction gave good prediction on initial stiffness, post-yielding performance, strength, pinching response and so on.

  • PDF