• 제목/요약/키워드: Structural Analyses

검색결과 3,146건 처리시간 0.03초

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.

Seismic performance evaluation of RC bearing wall structures

  • Rashedi, Seyed Hadi;Rahai, Alireza;Tehrani, Payam
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.113-126
    • /
    • 2022
  • Reinforced concrete bearing walls (RCBWs) are one of the most applicable structural systems. Therefore, vulnerability analysis and rehabilitation of the RCBW system are of great importance. In the present study, in order to the more precise investigation of the performance of this structural resistant system, pushover and nonlinear time history analyses based on several assumptions drawing upon experimental research were performed on several models with different stories. To validate the nonlinear analysis method, the analytical and experimental results are compared. Vulnerability evaluation was carried out on two seismic hazard levels and three performance levels. Eventually, the need for seismic rehabilitation with the basic safety objective (BSO) was investigated. The obtained results showed that the studied structures satisfied the BSO of the seismic rehabilitation guidelines. Consequently, according to the results of analyses and the desired performance, this structural system, despite its high structural weight and rigid connections and low flexibility, has integrated performance, and it can be a good option for earthquake-resistant constructions.

An analytical approach for offshore structures considering soil-structure interaction

  • Ali Sari;Kasim Korkmaz
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.25-38
    • /
    • 2024
  • This paper presents an advanced analytical approach for the design and analysis of fixed offshore structures with soil structure interaction considered. The proposed methodology involves conducting case studies to illustrate and assess the structural response of a structure considering seven different earthquakes, with the primary goal of ensuring there is no global collapse in the structures. The case studies focus on developing a model for structural analysis and its topside, incorporating nonlinear axial and lateral springs to capture soil-pile interaction. Additionally, mass and damping ratios are considered through the use of dashpots in the analyses. Finite Element Software was employed for structural analyses with detailed modeling, with soil spring nodes applied in the entire structure across various depths. After the finite element analysis was carried out, a sensitivity analysis was conducted to quantify and report the effects of different parameters.

Probabilistic evaluation of separation distance between two adjacent structures

  • Naeej, Mojtaba;Amiri, Javad Vaseghi;Jalali, Sayyed Ghasem
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.427-437
    • /
    • 2018
  • Structural pounding is commonly observed phenomenon during major ground motion, which can cause both structural and architectural damages. To reduce the amount of damage from pounding, the best and effective way is to increase the separation distance. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. The aim of this research is to estimate probabilistic separation distance between adjacent structures by considering the variability in the system and uncertainties in the earthquakes characteristics through comprehensive numerical simulations. A large number of models were generated using a robust Monte-Carlo simulation. In total, 6.54 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results show that a gap size of 50%, 70% and 100% of the considered design code for the structural periods in the range of 0.1-0.5 s, leads to have the probability of pounding about 41.5%, 18% and 5.8%, respectively. Finally, based on the results, two equations are developed for probabilistic determination of needed structural separation distance.

구조해석을 통한 보조발전기 경량화에 관한 연구 (A Study on the Light Weighting of APU through Structural Analysis)

  • 김혜은;김진훈;노상완;김병호;백현무
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

Structural design optimization of racing motor boat based on nonlinear finite element analysis

  • Song, Ha-Cheol;Kim, Tae-Jun;Jang, Chang-Doo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.217-222
    • /
    • 2010
  • Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

비과구동, 과구동 대칭형 5R 병렬기구의 구동 및 구조 강성의 이론적 해석 (Theoretical Analyses on Actuator Stiffness and Structural Stiffness of Non-redundant and Redundant Symmetric 5R Parallel Mechanisms)

  • 진상록;김종원;서태원
    • 한국정밀공학회지
    • /
    • 제29권9호
    • /
    • pp.971-977
    • /
    • 2012
  • Redundant actuated parallel kinematic machines (PKMs) have been widely researched to increase stiffness of PKMs. This paper presents theoretical analyses on the stiffness of non-redundant and redundant actuated PKM. Stiffness of each mechanism is defined by summation of actuator and structural stiffness; the actuator stiffness is determined from displacements of actuators, and the structural stiffness is determined from deformations of links by external forces. Calculated actuator and structural stiffness of non-redundant PKM show same distribution in entire workspace. On the contrary, the actuator and the structural stiffness of a redundant PKM has very different distribution in the workspace; so, we conclude the structural stiffness of redundant PKM should be considered to design the redundant PKM. The results can be used to design and analyze non-redundant and redundant PKMs.

Influence of ground motion selection methods on seismic directionality effects

  • Cantagallo, Cristina;Camata, Guido;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.185-204
    • /
    • 2015
  • This study investigates the impact of the earthquake incident angle on the structural demand and the influence of ground motion selection and scaling methods on seismic directionality effects. The structural demand produced by Non-Linear Time-History Analyses (NLTHA) varies with the seismic input incidence angle. The seismic directionality effects are evaluated by subjecting four three-dimensional reinforced concrete structures to different scaled and un-scaled records oriented along nine incidence angles, whose values range between 0 and 180 degrees, with an increment of 22.5 degrees. The results show that NLTHAs performed applying the ground motion records along the principal axes underestimate the structural demand prediction, especially when plan-irregular structures are analyzed. The ground motion records generate the highest demand when applied along the lowest strength structural direction and a high energy content of the records increases the structural demand corresponding to this direction. The seismic directionality impact on structural demand is particularly important for irregular buildings subjected to un-scaled accelerograms. However, the orientation effects are much lower if spectrum-compatible combinations of scaled records are used. In both cases, irregular structures should be analyzed first with pushover analyses in order to identify the weaker structural directions and then with NLTHAs for different incidence angles.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.