• Title/Summary/Keyword: Strong wall

Search Result 442, Processing Time 0.024 seconds

Direct Numerical Simulation of Turbulent Scalar Transport in a Channel with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.597-605
    • /
    • 2004
  • Turbulent temperature field in a channel subject to strong wall injection has been investigated via direct numerical simulation technique. These flows are pertinent to internal flows inside hybrid rocket motors. A simplified model problem where a regression process at the propellant surface is idealized by wall injection has been investigated to understand how the temperature field is modified. The effect of strong wall injection displaces thermal boundary layer away from the wall and this causes a sharp drop of friction temperature. Turbulent diffusivity and dissipation time scale for temperature field are found to show large variations in the streamwise direction under application of wall blowing. It is, thus, expected that more sophisticated turbulence models would be required to predict the disturbed temperature field accurately.

Numerical Study on the Suppression of Shock Induced Separation on a Strongly Heated Wall (강하게 가열된 벽면 위에서 충격파에 의한 경계층 박리의 제거에 관한 수치 연구)

  • LEE Doug-Bong;SHIN Joon-Cheol
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.59-72
    • /
    • 1997
  • A numerical model is constructed to simulate the interactions of oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The numerical diffusion in the finite volume method is reduced by the use of a higher order convection scheme(UMIST scheme) which is a TVD version of QUICK scheme. The turbulence model is Chen-Kim two time scale model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall suction is applied at the shock foot position. The bleeding slot width is about same as the upstream boundary layer thickness and suction mass flow is 10% of the flow rate in the upstream boundary layer. The final configuration of the shock reflection pattern and the wall pressure distribution approach to the non-viscous value when wall suction is applied.

  • PDF

CMF Design Trends of Wall-covering for Interior Showrooms: A Case Study of New York D&D Building in 2019 (인테리어 쇼룸에 전시된 벽지의 CMF 디자인 경향 연구 -2019년 뉴욕 D&D Building 사례를 중심으로 -)

  • Lee, Joonhan;Kim, Sun Mee
    • Journal of Fashion Business
    • /
    • v.23 no.4
    • /
    • pp.1-12
    • /
    • 2019
  • The study investigated trends in wall-covering displays in interior design stores. Although studies reported design trends at well-known exhibitions overseas such as Heimtextil and Maison objet, many different cases present actual realistic design flows. This study analyzes the actual market flow rather than design as an exhibition concept, and presents the interior CMF trends in 2019. The CMF design of wall-covering displayed in New York D&D Building in 2019 can be summarized as follows: W was the most frequently seen show-window, but like R, which is a strong color, it is also used to convey surrealistic images. The store entrance was designed to attract consumers' attention inside, and was constructed to reflect the actual trend. In the 2019 New York market, the wall-covering of Gray and YR were displayed through the shop entrance to suggest substantial sales. In addition, the demand for gold metallic wall-covering is significant as gold was strong in many forms. This study represents a valuable resource to identify trends in wall-covering from 2017 to 2019 compared with previous studies. This study represents a valuable foundation for a wide range of topics related to the use of wall-covering for interior decoration.

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Large Eddy Simulation of Turbulent Passive Scalar in a Channel with Strong Wall Injection (대와류모사 기법을 이용한 강한 벽분사가 있는 채널 내에서의 난류 유동장 및 온도장 해석)

  • Kim, Hak-Jong;Na, Yang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.628-637
    • /
    • 2004
  • The present study investigates the performance of dynamic mixed model (DMM; Zang et ai.) in a channel with strong wall injection through a Large eddy simulation (LES) technique. The DMM results are compared with those of DNS and the results obtained with popular dynamic Smagorinsky model (DSM). Better agreement is achieved when using the DMM with box filter than DSM and coarse DNS in predicting the first and second order statistics as well as large-scale structures of velocity and temperature fields. Such favorable features of DMM are attributed to the fact that it explicitly calculates the modified Leonard stress term and only models the remaining cross and the SGS Reynolds stress terms and, thus, it reduces the excessive burden put on the model coefficient of DSM. Also it is demonstrated that the DMM can be successfully extended to the prediction of temperature (passive scalar) field where strong streamwise inhomogeneity exists.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

The Corelation Analysis between Condition Evaluation Factors and Defect Index on the Concrete Retaining Wall (콘크리트 옹벽에 대한 상태평가 항목과 결함지수와의 상관관계 분석)

  • Seong, Joo Hyun;Byun, Yoseph;Lee, Dong Yul;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.52-58
    • /
    • 2015
  • Although lots of safety inspection and precision safety diagnosis have been conducted on concrete retaining wall, there is no comprehensive analysis on the basis of the accumulated data associated with the statistic. Especially, the concentrated management is necessary on the evaluation items that cause critical damages for the efficient performance. In this regard, this study conducted a correlation analysis between the 18 condition evaluation items and defect index for the concrete retaining wall as well as how each item affects the final defect index as much as in the manual. As a result, correlation coefficient between sliding and overturning was 0.601, which means that they have a strong correlation, and the most influential item on defect index is the condition of drainage that scored the 0.750 correlation coefficient. In addition, as a result of regression analysis, the condition of drainage with the 0.683 correlation coefficient has a strong correlation with the defect index. If the condition evaluation items are integrated or readjusted based on the results of the statistical analysis in this study, the more efficient and accurate maintenance will be possible.

A Simple Design Method of Un-reinforced Masonry Wall (비보강 조적 벽체의 간이 설계법(設計法))

  • Yoon, Myung-Ho;Cho, Byoung-Hoo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.2 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • The masonry structure has been widely used as the dwelling house structure in our country for a long time. The masonry structure is weak in the lateral forces such as strong wind and earthquake. But there is no regulation for it in the domestic aseismic design codes. The purpose of this study is to suggest a simple design method of un-reinforced masonry wall.

  • PDF

The Effect of Domain Wall on Defect Energetics in Ferroelectric LiNbO3 from Density Functional Theory Calculations

  • Lee, Donghwa
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.312-316
    • /
    • 2016
  • The energetics of defects in the presence of domain walls in $LiNbO_3$ are characterized using density-functional theory calculations. Domain walls show stronger interactions with antisite defects than with interstitial defects or vacancies. As a result, antisite defects act as a strong pinning center for the domain wall in $LiNbO_3$. Analysis of migration behavior of the antisite defects across the domain wall shows that the migration barrier of the antisite defects is significantly high, such that the migration of antisite defects across the domain wall is energetically not preferable. However, further study on excess electrons shows that the migration barrier of antisite defects can be lowered by changing the charge states of the antisite defects. So, excess electrons can enhance the migration of antisite defects and thus facilitate domain wall movement by weakening the pinning effect.