• 제목/요약/키워드: Strong earthquake

검색결과 486건 처리시간 0.023초

Health monitoring of a bridge system using strong motion data

  • Mosalam, K.M.;Arici, Y.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.427-442
    • /
    • 2009
  • In this paper, the acceptability of system identification results for health monitoring of instrumented bridges is addressed. This is conducted by comparing the confidence intervals of identified modal parameters for a bridge in California, namely Truckee I80/Truckee river bridge, with the change of these parameters caused by several damage scenarios. A challenge to the accuracy of the identified modal parameters involves consequences regarding the damage detection and health monitoring, as some of the identified modal information is essentially not useable for acquiring a reliable damage diagnosis of the bridge system. Use of strong motion data has limitations that should not be ignored. The results and conclusions underline these limitations while presenting the opportunities offered by system identification using strong motion data for better understanding and monitoring the health of bridge systems.

Investigation on damage development of AP1000 nuclear power plant in strong ground motions with numerical simulation

  • Chen, Wanruo;Zhang, Yongshan;Wang, Dayang;Wu, Chengqing
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1669-1680
    • /
    • 2019
  • Seismic safety is considered to be one of the key design objectives of AP1000 nuclear power plant (NPP) in strong earthquakes. Dynamic behavior, damage development and aggravation effect are studied in this study for the three main components of AP1000 NPP, namely reinforced concrete shield building (RCSB), steel vessel containment (SVC) and reinforced concrete auxiliary building (RCAB). Characteristics including nonlinear concrete tension and compressive constitutions with plastic damage are employed to establish the numerical model, which is further validated by existing studies. The author investigates three earthquakes and eight input levels with the maximum magnitude of 2.4 g and the results show that the concrete material of both RCSB and RCAB have suffered serious damage in intense earthquakes. Considering RCAB in the whole NPP, significant damage aggravation effect can be detected, which is mainly concentrated at the upper intersection between RCSB and RCAB. SVC and reinforcing bar demonstrate excellent seismic performance with no obvious damage.

철근콘크리트 구조물의 직접비탄성 내진설계를 위한 할선강성 (Secant Stiffness for Direct Inelastic Earthquake Design of Reinforced Concrete Structures)

  • 엄태성;김재요;박홍근
    • 한국지진공학회논문집
    • /
    • 제13권2호
    • /
    • pp.59-68
    • /
    • 2009
  • 안전하고 경제적인 내진설계를 위해서는 설계 초기단계부터 모멘트재분배와 부재소성변형을 고려하는 것이 바람직하다. 본 연구에서는 할선강성해석을 사용하여 각 부재의 재분배된 모멘트와 소성변형을 직접적으로 고려할 수 있는 내진설계방법을 개발하였다. 모멘트재분배에 의하여 발생된 비대칭 부재강성을 나타내기 위하여, 비강접 단부접합부를 갖는 보-기둥요소(NREC요소)를 사용하여 구조물을 모델링하였다. NREC요소에 사용되는 할선강성은 건물 및 부재의 요구연성도에 기반하여 결정하였다. 할선강성 구조모델에 대한 선형해석을 수행하여 내진설계를 위한 부재력과 소성변형을 구하였다. 본 연구에서는 할선강성해석을 모멘트골조와 이중골조의 내진설계에 적용하였고, 설계결과를 정밀한 비선형해석 결과와 비교하였다.

Effects on amplification of strong ground motion due to deep soils

  • Jakka, Ravi S.;Hussain, Md.;Sharma, M.L.
    • Geomechanics and Engineering
    • /
    • 제8권5호
    • /
    • pp.663-674
    • /
    • 2015
  • Many seismically vulnerable regions in India and worldwide are located on deep soil deposits which extend to several hundred meters of depth. It has been well recognized that the earthquake shaking is altered by geological conditions at the location of building. As seismic waves propagates through uppermost layers of soil and rock, these layers serve as filter and they can increase the duration and amplitude of earthquake motion within narrow frequency bands. The amplification of these waves is largely controlled by mechanical properties of these layers, which are function of their stiffness and damping. Stiffness and damping are further influenced by soil type and thickness. In the current study, an attempt has been made to study the seismic site response of deep soils. Three hypothetical homogeneous soil models (e.g., soft soil, medium soil and hard soil) lying on bedrock are considered. Depth of half space is varied from 30 m to 2,000 m in this study. Controlled synthetic motions are used as input base motion. One dimensional equivalent linear ground response analyses are carried out using a computer package DEEPSOIL. Conventional approach of analysing up to 30 m depth has been found to be inadequate for deep soil sites. PGA values are observed to be higher for deeper soil profiles as compared to shallow soil profiles indicating that deeper soil profiles are more prone to liquefaction and other related seismic hazards under earthquake ground shaking. The study recommends to deal the deeper soil sections more carefully for estimating the amplification factors for seismic hazard assessment at the surface.

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

할선강성을 이용한 직접비탄성내진설계 (Direct Inelastic Earthquake Design Using Secant Stiffness)

  • 박홍근;엄태성
    • 한국지진공학회논문집
    • /
    • 제8권1호
    • /
    • pp.17-27
    • /
    • 2004
  • 본 연구에서는 할선강성을 사용하여 반복계산을 수행하는 새로운 내진설계법을 개발하였다. 개발한 설계법은 탄성해석을 수행하므로 수치해석의 안정성과 용이성을 갖추고 있으며, 동시에 반복계산으로 구조물의 비탄성 거동을 해석할 수 있으므로 각 부재의 강도 및 연성 요구량을 정확히 예측할 수 있다. 본 연구에서는 제안된 설계법의 절차를 정립하였고, 이를 고려한 컴퓨터 해석/설계 프로그램을 개발하였다. 또한, 제안된 설계법을 사용한 설계예제를 제시하였고, 탄성 혹은 비탄성 해석을 이용한 기존 설계법과의 비교를 통하여 그 장점을 검증하였다. 해석과 설계를 통합적으로 수행하는 제안된 설계법은 설계자의 의도에 따라 부재의 강도 및 연성능력, 강기둥-약보 등과 같은 내진설계전략을 효과적으로 구현할 수 있으며, 초기설계단계에서 각 부재의 크기만이 가정된 구조물에 대하여 반복계산을 수행함으로써 주어진 설계전략을 만족하는 비탄성 강도 및 연성 요구량을 직접적으로 계산할 수 있으므로, 경제적이고 안전한 내진설계가 가능하다.

온사이트 지진조기경보를 위한 딥러닝 기반 실시간 오탐지 제거 (Deep Learning-Based, Real-Time, False-Pick Filter for an Onsite Earthquake Early Warning (EEW) System)

  • 서정범;이진구;이우동;이석태;이호준;전인찬;박남률
    • 한국지진공학회논문집
    • /
    • 제25권2호
    • /
    • pp.71-81
    • /
    • 2021
  • This paper presents a real-time, false-pick filter based on deep learning to reduce false alarms of an onsite Earthquake Early Warning (EEW) system. Most onsite EEW systems use P-wave to predict S-wave. Therefore, it is essential to properly distinguish P-waves from noises or other seismic phases to avoid false alarms. To reduce false-picks causing false alarms, this study made the EEWNet Part 1 'False-Pick Filter' model based on Convolutional Neural Network (CNN). Specifically, it modified the Pick_FP (Lomax et al.) to generate input data such as the amplitude, velocity, and displacement of three components from 2 seconds ahead and 2 seconds after the P-wave arrival following one-second time steps. This model extracts log-mel power spectrum features from this input data, then classifies P-waves and others using these features. The dataset consisted of 3,189,583 samples: 81,394 samples from event data (727 events in the Korean Peninsula, 103 teleseismic events, and 1,734 events in Taiwan) and 3,108,189 samples from continuous data (recorded by seismic stations in South Korea for 27 months from 2018 to 2020). This model was trained with 1,826,357 samples through balancing, then tested on continuous data samples of the year 2019, filtering more than 99% of strong false-picks that could trigger false alarms. This model was developed as a module for USGS Earthworm and is written in C language to operate with minimal computing resources.

추계학적 보사법을 이용한 한반도 남부에서의 강지진동 연구 (Stochastic Prediction of Strong Ground Motions in Southern Korea)

  • 조남대;박창업
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.17-26
    • /
    • 2001
  • 한반도 남부에서 발생 가능한 강지진동의 최대 지반운동과 주파수에 따른 특성을 추계학적 모사법을 이용하여 간접적으로 추정하였다. 또한 추계학적 모사법에 적용할 진원과 지진파 감쇠에 관한 입력자료를 계산하였다. 응력강하($\Delta$$\sigma$)는 한반도 남부와 미국 동부 및 중국의 연구결과를 종합하여 100-bar로 추정하였다. 감쇠상수는 x는 1996년 9월부터 1997년 12월까지 발생한 지진 중 비교적 기록상태가 양호한 57개의 관측자료를 이용하여 계산하였으며 진원거리(R)에 대하여 0.00112+0.000224 R로 추정되었다. 이와 같은 응력강하($\Delta$$\sigma$)와 감쇠상수 x등의 입력자료를 추계학적 모사법에 적용한 결과를 바탕으로 진원거리에 따른 강진동 감쇠공식을 유도하였다.한 결과를 바탕으로 진원거리에 따른 강진동 감쇠공식을 유도하였다.

  • PDF

한반도 지각 구조로 인한 이상 강진동 관측 및 해석 (Large Ground Motion Related to Crustal Structure in Korea)

  • 김광희;강수영;민동주;석봉출;류용규
    • 한국지구과학회지
    • /
    • 제29권7호
    • /
    • pp.559-566
    • /
    • 2008
  • 2007년 1월 20일 규모 4.8의 오대산 지진 관측기록을 사용하여 강진동 발생에 있어서 지각구조의 영향을 조사하였다. 이를 위하여 강진동을 발생시키는 위상을 규명하였으며, 지진위험성 평가에 있어서의 의미를 고찰하였다. 관측자료와 파형모사 분석 결과, 지각-맨틀 경계에서 반사된 파가 예상보다 큰 지진동을 발생시킴을 확인하였다. 본 연구는 우리나라와 같은 지진활동이 많지 않은 지역에서도 지진위험저감 연구에서 지각구조를 고려하여야 함을 보여주고 있다.

New vibration control device and analytical method for slender structures

  • Takabatake, Hideo;Ikarashi, Fumiya
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.11-39
    • /
    • 2013
  • Since slender structures such as utility poles, radio masts, and chimneys, are essentially statically determinate structures, they often collapse during earthquakes. Although vibration control is the most logical method for improving the earthquake resistance of such structures, there are many practical problems with its implementation due to their very long natural vibration period. This paper proposes a new vibration control device to effectively prevent the collapse of slender structures subjected to strong earthquakes. The device consists of a pendulum, an elastic restraint and a lever, and is designed such that when it is attached to a slender structure, the second vibration mode of the structure corresponds to the first vibration mode of the same structure without the device attached. This is highly effective in causing the transverse motions of the device and the structure to oppose each other and so reduce the overall transverse vibration during an earthquake. In the present paper, the effectiveness of the vibration control device is first evaluated based on laboratory experiments and numerical studies. An example of applying the device to a tall chimney is then simulated. A new dynamic analytical method for slender structures with abrupt rigidity variations is then proposed.