• Title/Summary/Keyword: Strong Winds

Search Result 303, Processing Time 0.033 seconds

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

Analysis of Wave and Current in Anmok Coastal Waters (안목해안의 파랑과 흐름 분석)

  • Lim, Hak-Soo;Kim, Mujong
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.1
    • /
    • pp.7-19
    • /
    • 2017
  • In this study, waves and currents observed by acoustic AWAC, VECTOR and Aquadopp Profiler in Anmok coastal waters were analysed to account for the variability of wave and current and to understand the mechanism of sediment transport generated by wave-induced current in the surf-zone. The monthly variation of wave and residual currents were analysed and processed with long-term observed AWAC data at station W1, located at the water depth of about 18m measured during from February 2015 to September 2016. Wave-induced currents were also analysed with intensive field measurements such as wave, current, suspended sediment, and bathymetry data observed at the surf-zone during in winter and summer. The statistical result of wave data shows that high waves coming from NNE and NE in winter (DEC-FEB) are dominant due to strong winds from NE. But in the other season waves coming from NE and ENE are prevalent due to the seasonal winds from E and SE. The residual currents with southeastern direction parallel to the shoreline are dominant throughout a year except in winter showing in opposite direction. The speed of ebb-dominant southeastern residual currents decreasing from surface to the bottom is strong in summer and fall but weak in winter and spring. By analysing wave-induced current, we found that cross-shore current were generated by swell waves mainly in winter with incoming wave direction about $45^{\circ}$ normal to the shoreline. Depending on the direction of incoming waves, longshore currents in the surf-zone were separated to southeastern and northwestern flows in winter and summer respectively. The variation of observed currents near crescentic bars in the surf-zone shows different direction of longshore and cross-shore currents depending on incoming waves implying to the reason of beach erosion generating the beach cusp and sandbar migration during high waves at Anmok.

Safety assessment of caisson transport on a floating dock by frequency- and time-domain calculations

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • When caissons are mounted on a floating transportation barge and towed by a tug boat in waves, motion of the floating dock creates inertia and gravity-induced slip forces on the caisson. If its magnitude exceeds the corresponding friction force between the two surfaces, a slip may occur, which can lead to an unwanted accident. In oblique waves, both pitch and roll motions occur simultaneously and their coupling effects for slip and friction forces become more complicated. With the presence of strong winds, the slip force can appreciably be increased to make the situation worse. In this regard, the safety of the transportation process of a caisson mounted on a floating dock for various wind-wave conditions is investigated. The analysis is done by both frequency-domain approach and time-domain approach, and their differences as well as pros and cons are discussed. It is seen that the time-domain approach is more direct and accurate and can include nonlinear contributions as well as viscous effects, which are typically neglected in the linear frequency-domain approach.

Experimental Investigation on Particle Size of Soils Erodible by Wind using Portable Wind Erosion Tunnel (소형 풍동을 이용한 토양의 풍식 가능 입경 분석)

  • Kim, Tae-Wan;Son, Young-Hwan;Min, Seul-Gi;Lee, In-Bok;Hong, Se-Woon;Kim, Min Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.127-133
    • /
    • 2013
  • The purpose of this study was to investigate maximum and minimum grain size which eroded by wind according to soil and wind conditions, such as top soil water content, roughness, land slope, wind velocity and proportion of grain size under 0.84mm. For performing this study, portable wind erosion tunnel was designed and utilized during field test, which facilitated measuring actual wind erosions under artificially controlled wind conditions. In the result, maximum, minimum grain size had strong negative correlation with roughness while weak positive correlation with wind velocity. Also, Slope which means the effect of gravity also influence grain size erodible by winds. Based on these results, regression equations were suggested for predicting maximum and minimum grain sizes by using multiple linear regression analysis from SPSS 20.0. The equation for maximum grain size erodible by winds showed a good agreement with the observed data with $R^2$=0.896. Other equation for minimum grain size had $R^2$=0.777.

Verification of Speed-up Mechanism of Pedestrian-level Winds Around Square Buildings by CFD

  • Hideyuki Tanaka;Qiang Lin;Yasuhiko Azegami;Yukio Tamura
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.301-314
    • /
    • 2022
  • Various studies have been conducted on pedestrian-level wind environments around buildings. With regard to the speed-up mechanism of pedestrian-level winds, there are references to downwash effect due to the vertical pressure gradient of boundary layer flow and venturi effect due to flow blocking by the building. Two factors contribute to increase or decrease of downwash effect: change in twodimensional / three-dimensional air flow pattern (Type 1) and change in downwash wind speed due to building size that does not accompany change in airflow pattern (Type 2). Previous studies have shown that downwash effect has a greater influence in increasing or decreasing the area of strong wind than venturi effect. However, these considerations are derived from the horizontal mean wind speed distribution at pedestrian level and are not the result of three-dimensional flow field around the building. Therefore, in this study, Computational Fluid Dynamics using Large Eddy Simulation were performed to verify the downwash phenomena that contributes to increase in wind speed at pedestrian level.

Study on Mock-up Construction Example of Free-Form Building Facade using External UHPC Panels - Focused on the Construction of Busan Opera House - (UHPC 외장패널을 활용한 비정형건축물 외장패널의 목업 시공사례에 대한 연구 - 부산 오페라 하우스 신축 공사 -)

  • Kim, Tae-Ik;Yoon, Ju-Yong;Choi, Byung-Keol;Park, Yong-Kyu;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.187-188
    • /
    • 2021
  • In the case of the Busan North Port, where the Busan Opera House is located, it is an environment exposed to various external deterioration factors such as frequent strong winds, seawater and salty winds, and an exterior material using UHPC (Ultra High Performance Concrete), a highly durable exterior material as a solution to this. Has been adopted. in this study, an economical production and construction direction was reviewed by applying UHPC to the exterior panels of atypical buildings that cannot cope with GFRC, metal, and glass, which are the main exterior finishing materials applied so far. When steel fibers are used, structural performance may be better than organic fibers, but due to environmental factors in Busan, corrosion due to exposure to steel fibers or problems with safety management after construction and completion may occur. Therefore, the site used the newly developed SACF fiber. Facade design of atypical buildings, which will increase in the future, is an important part, and the scope of use of UHPC panels is expected to increase in the future as design trends and demand for high durability increase.

  • PDF

Full-scale simulation of wind-driven rain and a case study to determine the rain mitigation effect of shutters

  • Krishna Sai Vutukuru;James Erwin;Arindam Gan Chowdhury
    • Wind and Structures
    • /
    • v.38 no.3
    • /
    • pp.171-191
    • /
    • 2024
  • Wind Driven Rain (WDR) poses a significant threat to the building environment, especially in hurricane prone regions by causing interior and content damage during tropical storms and hurricanes. The damage due to rain intrusion depends on the total amount of water that enters the building; however, owing to the use of inadequate empirical methods, the amount of water intrusion is difficult to estimate accurately. Hence, the need to achieve full-scale testing capable of realistically simulating rain intrusion is widely recognized. This paper presents results of a full-scale experimental simulation at the NHERI Wall of Wind Experimental Facility (WOW EF) aimed at obtaining realistic rain characteristics as experienced by structures during tropical storms and hurricanes. A full-scale simulation of rain in strong winds would allow testing WDR intrusion through typical building components. A study of rain intrusion through a sliding glass door is presented, which accounted for the effects of multiple wind directions, test durations and wind speeds; configurations with and without shuttering systems were also considered. The study showed that significant levels of water intrusion can occur during conditions well below current design levels. The knowledge gained through this work may enhance risk modeling pertaining to loss estimates due to WDR intrusion in buildings, and it may help quantify the potential reduction of losses due to the additional protection from shuttering systems on sliding glass doors during winds.

Development of Estimation Functions for Strong Winds Damage Based on Regional Characteristics : Focused on Jeolla area (지역특성 기반의 강풍피해 예측함수 개발 : 전라지역을 중심으로)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 2020
  • Abnormal weather conditions have lately been occurring frequently due to the rapid economic development and global warming. Natural disasters classified as storm and flood damages such as heavy rain, typhoon, strong wind, high seas and heavy snow arouse large-scale human and material damages. To minimize damages, it is important to estimate the scale of damage before disasters occur. This study is intended to develop a strong wind damage estimation function to prepare for strong wind damage among various storm and flood disasters. The developed function reflects weather factors and regional characteristics based on the strong wind damage history found in the Natural Disaster Yearbook. When the function is applied to a system that collects real-time weather information, it can estimate the scale of damage in a short time. In addition, this function can be used as the grounds for disaster control policies of the national and local governments to minimize damages from strong wind.

Meteorological Mechanisms Associated with Long-range Transport of Asian Dust Observed at the West Coast of North America in April 2001

  • Song Sang-Keun;Kim Yoo-Keun;Moon Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.1-14
    • /
    • 2004
  • Meteorological mechanisms in association with long-range transport of Asian dust in April 2001 have been investigated using weather maps, satellite images, TOMS and surface $PM_{10}$ data, backward trajectories, plus modeling output results (geopotential heights, horizontal wind vectors, potential temperatures, and streamlines). The results indicated that long -range transport of Asian dust to the west coast of North America was associated with strong westerlies between the Aleutian low and the Pacific high acting as a conveyor belt. Accelerating westerly flows due to cyclogenesis at the source regions over East Asia transported pollution from the continent to the central Pacific. When the system reached the Aleutian Islands, the intensity of troughs and the westerlies were amplified in the North Pacific. Thereafter the winds between the Aleutian Islands and the Pacific Ocean were more intensified from the air flow transport of the conveyor belt. Consequently, the strong wind in the conveyor belt enhanced the dust transport from the Pacific Ocean to the west coast of North America. This was evidenced by $PM_{10}$ concentration (maximum of about $100{\mu}g\;m^{-3}$) observed In California. Further evidence of the dust transport was found through the observation of satellite images, the distribution of TOMS aerosol index, and the analyses of streamlines and backward trajectories.

Model Optimization for Sea Surface Wind Simulation of Strong Wind Cases (강풍 사례의 해상풍 모의를 위한 모형의 최적화)

  • Heo, Ki-Young;Lee, Jeong-Wook;Ha, Kyung-Ja;Jun, Ki-Cheon;Park, Kwang-Soon
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.263-279
    • /
    • 2008
  • This study is concerned with the optimization of models using MM5 and WRF mesoscale numerical models to simulate strong sea surface winds, such as that of typhoon Shanshan on 17 September 2006, and the Siberian high event on 16 December 2006, which were selected for displaying the two highest mean wind speeds. The model optimizations for the lowest level altitude, physical parameters and horizontal resolution were all examined. The sea surface wind values obtained using a logarithmic function which takes into account low-level stability and surface roughness were more accurate than those obtained by adjusting the lowest-level of the model to 10 m linearly. To find the optimal parameters for simulating strong sea surface winds various physical parameters were combined and applied to the model. Model grid resolutions of 3-km produced better results than those of 9-km in terms of displaying accurately regions of strong wind, low pressure intensities and low pressure mesoscale structures.