• Title/Summary/Keyword: Strong El $Ni{\tilde{n}}o$

Search Result 19, Processing Time 0.025 seconds

Relation between Climate Variability in Korea and Two Types of El Niño, and Their Sensitivity to Definition of Two Types of El Niño (두 가지 형태의 엘니뇨 정의에 따른 한반도 기후 상관성 분석)

  • Kim, Jin-Soo;Kug, Jong-Seong;Yeh, Sang-Wook;Kim, Hyun-Kyung;Park, E-Hyung
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • Recently, several studies pointed out that there are distinct two types of El Ni$\tilde{n}$o events based on the spatial pattern of SST. Since the two types of El Ni$\tilde{n}$o have different impacts on global climate, it is quite important to identify the type to assess and predict the regional climate variability. So far, however, there are still many different definitions to identify the two types of El Ni$\tilde{n}$o from the different studies. In this study, we investigated a sensitivity of the impacts on climate variability over the Korean Peninsula corresponding to the definition of two-types of El Ni$\tilde{n}$o. After checking pre-existing definitions and other possible definition, it is suggested here that two different definitions exhibit relatively strong relationship between El Ni$\tilde{n}$o events and the Korean climate variables when two types of El Ni$\tilde{n}$o are separated. In addition to the Korean climate, the two types of El Ni$\tilde{n}$o show quite distinct global teleconnection patterns when the definitions are used.

On the Relationship between Typhoon Intensity and Formation Region: Effect of Developing and Decaying ENSO (태풍 강도와 발생지역의 상관성 연구: ENSO 발달과 소멸의 영향)

  • Jang, Sae-Rom;Ha, Kyung-Ja
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.29-44
    • /
    • 2008
  • This study investigates the influence of the developing and decaying El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) on the relation between typhoon intensity and its formation. From the long-tenn data of 57 years ($1950{\sim}2006$), we first defined the developing El $Ni{\tilde{n}}o$ years and the neutral years. During the developing El Nino years, the typhoon intensity has a strong relationship with formation region of the tropical cyclone, which results in an increase of the accumulated cyclone energy and intensity of energy of typhoon. During the developing El $Ni{\tilde{n}}o$ year based on $Ni{\tilde{n}}o$ 3.4 SST, the locations for the formation of the category 4+5 typhoon move to the eastward region. The genesis potential function and the low-level cyclonic vorticity have an important role on the formation of strong tropical cyclones, which eventually develop as a typhoon class. In this study, the dynamic potential (DP) function (Gray, 1977) and EOF 1 and EOF 2 time series (RMM 1 and RMM 2) of real-time multivariate MJO (Wheeler and Hendon, 2004) are used to measure the genesis potential and the low-level cyclonic vorticity, respectively. To investigate the influence of the developing and decaying ENSO, we defined the Type I case of the decaying El $Ni{\tilde{n}}o$ that turnovers to La Nina, and the Type II case of the recovering years to the neutral condition. During the decaying El $Ni{\tilde{n}}o$ years as Type I, the locations of the strong DP, RMM 1 and RMM 2 move to the westward more prominently to induce retard of the strong typhoon developing.

Characteristics of Tropical Cyclones in 2010 (2010년 태풍 특징)

  • Lim, Myeong Soon;Moon, Il-Ju;Cha, Yu-Mi;Chang, Ki-Ho;Kang, Ki-Ryong;Byun, Kun Young;Shin, Do-Shick;Kim, Ji Young
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.283-301
    • /
    • 2014
  • In 2010, only 14 tropical cyclones (TCs) were generated over the western North Pacific (WNP), which was the smallest since 1951. This study summarizes characteristics of TCs generated in 2010 over the WNP and investigates the causes of the record-breaking TC genesis. A long-term variation of TC activity in the WNP and verification of official track forecast in 2010 are also examined. Monthly tropical sea surface temperature (SST) anomaly data reveal that El Ni$\tilde{n}$o/Southern Oscillation (ENSO) event in 2010 was shifted from El Ni$\tilde{n}$o to La Ni$\tilde{n}$a in June and the La Ni$\tilde{n}$a event was strong and continued to the end of the year. We found that these tropical environments leaded to unfavorable conditions for TC formation at main TC development area prior to May and at tropics east of $140^{\circ}E$ during summer mostly due to low SST, weak convection, and strong vertical wind shear in those areas. The similar ENSO event (in shifting time and La Ni$\tilde{n}$a intensity) also occurred in 1998, which was the second smallest TC genesis year (16 TCs) since 1951. The common point of the two years suggests that the ENSO episode shifting from El Ni$\tilde{n}$o to strong La Ni$\tilde{n}$a in summer leads to extremely low TC genesis during La Ni$\tilde{n}$a although more samples are needed for confidence. In 2010, three TCs, DIANMU (1004), KOMPASU (1007) and MALOU (1009), influenced the Korean Peninsula (KP) in spite of low total TC genesis. These TCs were all generated at high latitude above $20^{\circ}N$ and arrived over the KP in short time. Among them, KOMPASU (1007) brought the most serious damage to the KP due to strong wind. For 14 TCs in 2010, mean official track forecast error of the Korea Meteorological Administration (KMA) for 48 hours was 215 km, which was the highest among other foreign agencies although the errors are generally decreasing for last 10 years, suggesting that more efforts are needed to improve the forecast skill.

Long-term Trends in Pelagic Environments of the East Sea Ecosystem

  • Lee, Chung-Il;Lee, Jae-Young;Choi, Kwang-Ho;Park, Sung-Eun
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Physical and biological environmental variations in the East Sea were investigated by analysing time-series of oceanographic data and meteorological indices. From 1971 to 2000, dominant periodicity in water temperature variations had two apparent periods of 3 to 4 years and of decades, especially in the southwestern part of the East Sea affected by the influence of inflowing Tsushima warm current. Fluctuating water temperature within a certain period appears to respond to El $Ni{\tilde{n}}o$ events with a time lag. It was found that there was a strong correlation between water temperature and El $Ni{\tilde{n}}o$ events with a time lag of 1.5 and 5.5 years for periods of 3 to 6 years and of decades, respectively. Corresponding with El $Ni{\tilde{n}}o$ events, water temperature variability also showed strong correlation with shift and/or changes in biological and chemical environments of nutrient concentrations, zooplankton biomass, and fisheries. However, there also occurred a short-term periodicity of water temperature variations. Within a period of 1 to 4 years, a relatively short-term cycle of water temperature variation had strong correlation with other climate indices such as Pacific Decadal Oscillation and monsoon index. After comparing coherence and phase spectrum between water temperature and different climate indices, we found that there was a shift of coherent periods to another climate index during the years when climate regime shift was reported.

Analysis on the Variability of Korean Summer Rainfall Associated with the Tropical Low-frequency Oscillation (적도 저주파 진동과 관련된 한반도 여름철 강수의 변동성 연구)

  • Moon, Ja-Yeon;Choi, Youngeun;Park, Changyong
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.2
    • /
    • pp.184-203
    • /
    • 2013
  • This study analyzes the variability of Korean summer rainfall associated with the tropical low-frequency oscillation using long-term observation data. From the EOF analysis, the first mode showed opposite phase between the South and the North Korea with the regime shift in rainfall variability since the mid-1990s. The summer precipitation over South Korea tends to increase in southern part during strong El Ni$\tilde{n}$o where the warm sea surface temperature extends to far eastern tropical Pacific. In weak La Ni$\tilde{n}$a, the increased precipitation directly influences from the western tropical Pacific to the mid-latitude. In June, the rainfall over South Korea is positively correlated with the Indian Summer Monsoon while in July, it is negatively correlated with the Western North Pacific Summer Monsoon. In August, highly negative correlation between the rainfall over South Korea and the Indian Summer Monsoon is found.

  • PDF

Effect of El Niño and La Niña on the Coastal Upwelling in East Sea, South Korea (엘니뇨와 라니냐가 한국 동해 연안용승에 미치는 영향)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the effects of El Niño and La Niña on coastal upwelling in the East Sea of Korea using long-term (1967-2017) water temperature observation data and Oceanic Niño Index (ONI). As a result of time series analysis of water temperature, the occurrence frequency of summer coastal upwelling was the highest in the southeastern (Ulgi ~ Gimpo) coast. In 1987-1988 and 1997-1998, when the annual fluctuations of ONI plunged more than 2.5, the water temperature in whole coast areas of the East Sea (Busan ~ Goseung) rose by 4 ~ 7 ℃. The temperature structure of the East Sea coastal water was different when El Niño was strong with ONI above 1.5 and La Niña with strong ONI below -0.8. When El Niño is strong, the water temperature anomaly in coastal waters is negative. This is due to the strong baroclinic tilting and the formation of shallow temperature stratification in the coastal waters. The strong La Niña season is opposite to the strong El Niño season, whereas the water temperature anomaly is positive. In addition, the baroclinic tilting is weaker than the time of strong El Niño and the temperature stratification is formed deeper than the time of strong El Niño. The formation of temperature stratification at shallow depths when El Niño is strong can increase the probability of occurrence coastal upwelling caused by southerly winds in the summer season. On the contrary, when La Niña is strong, occurrence of coastal upwelling is less likely even if the southerly wind blows continuously. This is because the temperature stratification is formed at deeper than when El Niño is strong.

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

Possible Relationship between NAO and Western North Pacific Typhoon Genesis Frequency (북대서양 진동과 북서태평양 태풍발생빈도와의 관계)

  • Choi, Ki-Seon;Park, Sangwook;Chang, Ki-Ho;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.224-234
    • /
    • 2013
  • This study examined a strong positive correlation between the North Atlantic Oscillation (NAO) index during June and the total tropical cyclone (TC) genesis frequency in the western North Pacific during July and August. To investigate a possible cause for this relationship, the mean difference between the highest positive NAO years and the lowest negative NAO years was analyzed by dividing into when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included and when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included. When the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included, for the positive NAO years, the TCs mostly occurred in the northwestern region of tropical and subtropical western Pacific, and showed a pattern that migrate from the sea northeast of the Philippines, pass the East China Sea, and move toward the mid-latitudes of East Asia. In contrast, for the negative NAO years, the TCs mostly occurred in the southeastern region of tropical and subtropical western Pacific, and showed a pattern that migrate westward from the sea southeast of the Philippines, pass the South China Sea, and move toward the southern coast of China and Indochinese peninsula. These two different TC migration patterns affect the recurving location of TC, and for the positive NAO years, the recurving of TC was averagely found to take place in the further northeast. In addition, the migration patterns also affect the TC intensity, and the TCs of positive NAO years had stronger intensity than the TCs of negative NAO years as sufficient energy can be absorbed from the ocean while moving north in the mid-latitudes of East Asia. The TCs of negative NAO years showed weak intensity as they get weaken or disappear shortly while landing on the southern coast of China and the Indochinese peninsula. On the other hand, the above result of analysis is also similarly observed when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included.

Assessment of Climate Variability over East Asia-Korea for 2015/16 Winter (2015/16 겨울 동아시아-한반도 기후 특성 분석)

  • Jeong, Jee-Hoon;Park, Tae-Won;Choi, Ja-Hyun;Son, Seok-Woo;Song, Kanghyun;Kug, Jong-Seong;Kim, Baek-Min;Kim, Hyun-kyung;Yim, So-Young
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.337-345
    • /
    • 2016
  • This paper is to assess the state of climate over East Asia and Korea during 2015/16 winter. There was a distinct intraseasonal climate variation during the period: the record-breaking warmth in December 2015 vs. strong cold surge outbreaks in January 2016. It is suggested that the anomalous warming in December 2015 was contributed by an intensification of Kuroshio anticyclone associated with 2015/16 El $Ni{\tilde{n}}o$ and polar vortex intensification. In January 2016, a strong cold surge outbroke over East Asia bringing severe cold more than two weeks. The cold surge was a blocking-type one which followed extremely negative AO developed from early January. It was suggested that the intensification of cold surge might be contributed indirectly by a strong Arctic warming and MJO activity during the period.