• Title/Summary/Keyword: Stromal cells

Search Result 379, Processing Time 0.026 seconds

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes

  • Song, Yae Chan;Lee, Seung Eon;Jin, Young;Park, Hyun Woo;Chun, Kyung-Hee;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.763-773
    • /
    • 2020
  • Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.

Repopulation of autophagy-deficient stromal cells with autophagy-intact cells after repeated breeding in uterine mesenchyme-specific Atg7 knockout mice

  • Ji-Eun Oh;Sojung Kwon;Hyunji Byun;Haengseok Song;Hyunjung Jade Lim
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.3
    • /
    • pp.170-176
    • /
    • 2023
  • Objective: Autophagy is highly active in ovariectomized mice experiencing hormone deprivation, especially in the uterine mesenchyme. Autophagy is responsible for the turnover of vasoactive factors in the uterus, which was demonstrated in anti-Müllerian hormone receptor type 2 receptor (Amhr2)-Cre-driven autophagy-related gene 7 (Atg7) knockout (Amhr-Cre/Atg7f/f mice). In that study, we uncovered a striking difference in the amount of sequestosome 1 (SQSTM1) accumulation between virgin mice and breeder mice with the same genotype. Herein, we aimed to determine whether repeated breeding changed the composition of mesenchymal cell populations in the uterine stroma. Methods: All female mice used in this study were of the same genotype. Atg7 was deleted by Amhr2 promoter-driven Cre recombinase in the uterine stroma and myometrium, except for a triangular stromal region on the mesometrial side. Amhr-Cre/Atg7f/f female mice were divided into two groups: virgin mice with no mating history and aged between 11 and 12 months, and breeder mice with at least 6-month breeding cycles with multiple pregnancies and aged around 12 months. The uteri were used for Western blotting and immunofluorescence staining. Results: SQSTM1 accumulation, representing Atg7 deletion and halted autophagy, was much higher in virgin mice than in breeders. Breeders showed reduced accumulation of several vasoconstrictive factors, which are potential autophagy targets, in the uterus, suggesting that the uterine stroma was repopulated with autophagy-intact cells during repeated pregnancies. Conclusion: Multiple pregnancies seem to have improved the uterine environment by replacing autophagy-deficient cells with autophagy-intact cells, providing evidence of cell mixing.

Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure

  • Evans, Isabel;Kim, Mi-Yeon
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.189-193
    • /
    • 2009
  • During development lymphoid tissue inducer (LTi) cells are the first hematopoietic cells to enter the secondary lymphoid anlagen and induce lymphoid tissue neogenesis. LTi cells induce lymphoid tissue neogensis by expressing a wide range of proteins that are associated with lymphoid organogenesis. Among these proteins, membrane-bound lymphotoxin (LT) $\alpha1\beta2$ has been identified as a critical component to this process. LT$\alpha1\beta2$ interacts with the LT$\beta$-receptor on stromal cells and this interaction induces up-regulation of adhesion molecules and production of chemokines that are necessary for the attraction, retention and organization of other cell types. Constitutive expression of LT$\alpha1\beta2$ in adult LTi cells can result in the formation of a lymphoid-like structure called tertiary lymphoid tissue. In this review, we summarize the function of fetal and adult LTi cells and their involvement in secondary and tertiary lymphoid tissue development in murine models.

Generation of $CD2^+CD8^+$ NK Cells from c-$Kit^+$ Bone Marrow Cells in Porcine

  • Lim, Kyu-Hee;Han, Ji-Hui;Roh, Yoon-Seok;Kim, Bum-Seok;Kwon, Jung-Kee;You, Myoung-Jo;Han, Ho-Jae;Ejaz, Sohail;Kang, Chang-Won;Kim, Jong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.167-174
    • /
    • 2012
  • Natural killer (NK) cells provide one of the initial barriers of cellular host defense against pathogens, in particular intracellular pathogens. Because bone marrow-derived hematopoietic stem cells (HSCs), lymphoid protenitors, can give rise to NK cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that porcine c-$kit^+$ bone marrow cells (c-$kit^+$ BM cells) develop into NK cells in vitro in the presence of various cytokines [interleukin (IL)-2, IL-7, IL-15, IL-21, stem cell factor (SCF), and fms-like tyrosine kinase-3 ligand (FLT3L)]. Adding hydrocortisone (HDC) and stromal cells greatly increases the frequency of c-$kit^+$ BM cells that give rise to $CD2^+CD8^+$ NK cells. Also, intracellular levels of perforin, granzyme B, and NKG2D were determined by RT-PCR and western blotting analysis. It was found that of perforin, granzyme B, and NKG2D levels significantly were increased in cytokine-stimulated c-$kit^+$ BM cells than those of controls. And, we compared the ability of the cytotoxicity of $CD2^+CD8^+$ NK cells differentiated by cytokines from c-$kit^+$ BM cells against K562 target cells for 28 days. Cytokines-induced NK cells as effector cells were incubated with K562 cells as target in a ratio of 100 : 1 for 4 h once a week. In results, $CD2^+CD8^+$ NK cells induced by cytokines and stromal cells showed a significantly increased cytotoxicity 21 days later. Whereas, our results indicated that c-$kit^+$ BM cells not pretreated with cytokines have lower levels of cytotoxicity. Taken together, this study suggests that cytokines-induced NK cells from porcine c-$kit^+$ BM cells may be used as adoptive transfer therapy if the known obstacles to xenografting (e.g. immune and non-immune problems) were overcome in the future.

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

A STUDY OF THE EFFECT OF CULTURED BONE MARROW STROMAL CELLS ON PERIPHERAL NERVE REGENERATION (체외 배양한 골수줄기세포를 이용한 말초신경재생에 관한 연구)

  • Choi, Byung-Ho;Zhu, Shi-Jiang;Jung, Jae-Hyung;Huh, Jin-Young;Lee, Seoung-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.492-495
    • /
    • 2005
  • The role of cultured bone marrow stromal cells (BMSCs) in peripheral nerve regeneration was examined using an established rabbit peroneal nerve regeneration model. A 15-mm peroneal nerve defect was bridged with a vein filled with BMSCs $(1{\times}10^6)$, which had been embedded in collagen gel. On the contralateral side, the defect was bridged with a vein filled with collagen gel alone. When the regenerated tissue was examined 4, 8 and 12 weeks after grafting, the number and diameter of the myelinated fibers in the side with the BMSCs were significantly higher than in the control side without the BMSCs. This demonstrates the potential of using cultured BMSCs in peripheral nerve regeneration.

Neuronal Phenotypes and Gene Expression Profiles of the Human Adipose Tissue-Derived Stromal Cells in the Neuronal Induction (신경 분화 유도한 인체 지방조직 유래 간질세포의 신경 표현형과 유전자 발현)

  • Shim, Su Kyung;Oh, Deuk Young;Jun, Young Joon;Lee, Paik Kwon;Ahn, Sang Tae;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Purpose: Human adipose tissue-derived stromal cells(hADSCs) can be expanded in vitro and induced to differentiate into multiple mesenchymal cell types. In this study we have examined various neuronal phenotypes and gene expression profiles of the hADSCs in the neuronal induction. Methods: The hADSCs were isolated from human adipose tissue and they were characterized by the flow cytometry analysis using CD13, CD29, CD34, CD45, CD49d, CD90, CD105 and HLA-DR cell surface markers. We differentiated the hADSCs into the neuronal lineage by using chemical induction medium and observed the cells with contrast microscopy. The immunocytochemistry and western blotting were performed using the NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III antibodies. Results: The hADSCs were positive for CD13($90.3{\pm}4%$), CD29($98.9{\pm}0.7%$), CD49d($13.6{\pm}6%$), CD90 ($99.4{\pm}0.1%$), CD105($96%{\pm}2.8%$) but negative for CD34, CD45 and HLA-DR. The untreated cultures of hADSCs predominately consisted of spindle shaped cells and a few large, flat cells. Three hours after the addition of induction medium, the hADSCs had changed morphology and adopted neuronal-like phenotypes. The result of immunocytochemistry and western blotting showed that NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III were expressed. However, NSE, NeuN, Vimentin were weakly expressed in the control. Conclusion: Theses results indicate that hADSCs have the capabillity of differentiating into neuronal lineage in a specialized culture medium. hADSCs may be useful in the treatment of a wide variety of neurological disorders.

Effect of Allogenic Adipose-derived Stromal Cells on Wound Healing in BALB/c Mice (BALB/c 마우스에서 동종 지방유래 기질세포가 창상치유에 미치는 영향)

  • Yoon, Jeong-Won;Lim, Jin-Soo;Kim, Jung-Nam;Yoo, Gyeol
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.323-328
    • /
    • 2010
  • Purpose: Adipose-derived stromal cells (ADSCs) are multipotent cells that have been found to promote wound healing through the process of angiogenesis and reepithelialization. Generally, it is well known that the antigenicity of ADSCs doesn't affect stem cell therapy. In this study, we investigated the effect of allogeneic ADSCs in the wound healing process by applying allogeneic ADSCs on the wound healing splint model of mice. Methods: Adipose tissue was harvested from the epididymal fat pads of BALB/c and C57BL/6 mice. Twenty four mice BALB/c were divided into three groups; control, isogeneic, and allogeneic groups. Two full thickness defects with 6 mm diameters were created on the back of BALB/c mice. $1{\times}10^6$ ADSCs from BALB/c mice were applied on the isogeneic group. In the allogeneic group, ADSCs from the C57BL/6 mice were applied. No cells were applied to the control group. The sizes of the wounds were evaluated in 3, 5, 7, 10, and 14 days after the wounds were applied, and tissues were harvested in 7 and 14 days for histological analysis. Results: Wound healing rates had showed significant increase in 10, and 14 days when the isogeneic group was compared to the control group, but the allogeneic group showed significantly decrease compared to the isogeneic group (p<0.05). Histological scores in the isogeneic group were significantly high, but significantly lower in the allogeneic group when compared to the isogeneic group in 2 weeks (p<0.05). In the isogeneic group, thick inflammatory cell infiltration with abundant capillaries were observed in 1 week, and thick epithelium with many large capillaries were observed in 2 weeks. Conclusion: When isogeneic ADSCs were applied to wounds, they presented a faster wound healing rate compared to controls and the allogeneic group. Unlike general stem cell therapy, these findings suggest that cell therapy targeted at enhancing wound healing may benefit from the use of ADSCs with identical antigenicity, as opposed to allogeneic or xenogenic ADSCs.

Imprint Cytology of a Desmoplastic Small Round Cell Tumor -A Case Report- (결합조직형성소원형세포종양의 압착도말 세포학적 소견 -1예 보고-)

  • Kim, Yong-Jin;Kim, Jae-Hwang;Choi, Joon-Hyuk
    • The Korean Journal of Cytopathology
    • /
    • v.18 no.1
    • /
    • pp.81-86
    • /
    • 2007
  • Desmoplastic small round cell tumor (DSRCT) is a rare malignant mesenchymal neoplasm. It mainly involves the abdominal or pelvic peritoneum of male adolescents. We report here the imprint cytologic features of a case of DSRCT occurring in the intraabdominal cavity of a 21-year-old man. A microscopic examination showed moderate cellularity. The tumor cells were singly arranged and arranged in clusters. The cells had round to oval nuclei with finely granular chromatin, inconspicuous nucleoli and scanty cytoplasm. Some tumor cells showed nuclear molding, and some cells had an epitheloid appearance with a large amount of lightly eosinophilic cytoplasm. A rosette-like pattern was present. Spindle-shaped, fibroblastic stromal cells were occasionally found. The tumor cells were immunoreactive for the markers cytokeratin (AE1/AE3), epithelial membrane antigen (EMA), desmin, vimentin and neuron specific enolase (NSE).