• Title/Summary/Keyword: Strip analytical technique

Search Result 8, Processing Time 0.015 seconds

Buckling and vibration of symmetric laminated composite plates with edges elastically restrained

  • Ashour, Ahmed S.
    • Steel and Composite Structures
    • /
    • v.3 no.6
    • /
    • pp.439-450
    • /
    • 2003
  • The finite strip transition matrix technique, a semi analytical method, is employed to obtain the buckling loads and the natural frequencies of symmetric cross-ply laminated composite plates with edges elastically restrained against both translation and rotation. To illustrate the accuracy and the validation of the method several example of cross play laminated composite plates were analyzed. The buckling loads and the frequency parameters are presented and compared with available results in the literature. The convergence study and the excellent agreement with known results show the reliability of the purposed technique.

Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method

  • Khayat, Majid;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Baghlani, Abdolhossein
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.735-748
    • /
    • 2018
  • In this study, the semi-analytical finite strip method is adopted to examine the free vibration of cylindrical shells made up of functionally graded material. The properties of functionally graded shells are assumed to be temperature-dependent and vary continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of ceramic and metal. The material properties of the shells and stiffeners are assumed to be continuously graded in the thickness direction. Theoretical formulations based on the smeared stiffeners technique and the classical shell theory with first-order shear deformation theory which accounts for through thickness shear flexibility are employed. The finite strip method is applied to five different shell theories, namely, Donnell, Reissner, Sanders, Novozhilov, and Teng. The approximate procedure is compared favorably with three-dimensional finite elements. Finally, a detailed numerical study is carried out to bring out the effects of power-law index of the functional graded material, stiffeners, and geometry of the shells on the difference between various shell theories. Finally, the importance of choosing the shell theory in simulating the functionally graded cylindrical shells is addressed.

Generalized coupled non-Fickian/non-Fourierian diffusion-thermoelasticity analysis subjected to shock loading using analytical method

  • Hosseini, Seyed Amin;Abolbashari, Mohammad Hossein;Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.529-545
    • /
    • 2016
  • In this article, the generalized coupled non-Fickian diffusion-thermoelasticity analysis is carried out using an analytical method. The transient behaviors of field variables, including mass concentration, temperature and displacement are studied in a strip, which is subjected to shock loading. The governing equations are derived using generalized coupled non-Fickian diffusion-thermoelasticity theory, which is based on Lord-Shulman theory of coupled thermoelasticity. The governing equations are transferred to the frequency domain using Laplace transform technique and then the field variables are obtained in analytical forms using the presented method. The field variables are eventually determined in time domain by employing the Talbot technique. The dynamic behaviors of mass concentration, temperature and displacement are studied in details. It is concluded that the presented analytical method has a high capability for simulating the wave propagation with finite speed in mass concentration field as well as for tracking thermoelastic waves. Furthermore, the obtained results are more realistic than that of others.

The Study on Automation and Development of Strip Continuous Casting by Twin Roller Type (쌍로울형 박판연속주조공정의 개발과 자동화에 관한 연구)

  • Lee, Sang-Mae;Kim, Young-Do;Baek, Nam-Ju;Gang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-52
    • /
    • 1990
  • In this study, the characteristics of cooling and rolling during strip casting process is obtained in comparison with the experimental and analytical results. The prupose of this study is to effectively analyze the thermal and mechanical deformation of roller applying the results of the heat transfer and the pressure distribution to boundary conditions. And then the relation between strip thickness and roll deformation is shown. The second purpose is to obtain the proper condition of the continuous casting for stainless steel. The summary and conclusions can be made on the basis of the results obtained by the theories and experiments. a) The strip casting condition for the fine surface quality of tin-alloy as-cast material was obtained in accordance with the velocity of roll rotation and initial roll gap. b) The experimental condition that the dimension of the cast strip thickness coincide with that of the initial roll gap was according to the experimental result of continuous casting by twin-roll type. c) The thermoelastic finite element model to calculate the roll deformation is represented. Thermoelastic model prediction for the roll deformation are in good agreement with the experimental results considering the thermal expansion of the roll. d) The higher cooling rates were obtained by a twin-roller quenching technique. Also quenched microstructure of the rapidly solidified shell was verified. e) The magnitude of roll deformation due to the thermal expansion and roll separating force is quantit- atively represented in the analysis of continuous casting for stainless steel.

  • PDF

Determination of the Actual Equilibrium Shape Finding and Optimum Cutting Pattern for Membrane Structures (막구조물의 준공평형형상해석 및 최적재단도 결정)

  • Lee, Jang-Bog;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-166
    • /
    • 2001
  • In general, the cutting pattern of the membrane structures is determined by dividing the complicated curved 3-D surface into several 2-D plane strip by using flattening technique. In this procedure, however, some discrepancies ore occurred between actual stresses of equilibrated state and designed uniform stresses because the material properties are not considered. These deviations can cause the critical structural problems, wrinkling or overstress, and thus a optimization process should be considered. In this paper, a new analytical method for determining an optimum cutting pattern considering material properties is presented. Here, iterative procedure is introduced to decrease the errors caused in numerical process. The optimization method proposed can diminish the deviations occurred by material properties and numerical errors, simultaneously. As a results, it is shown that the final stress distributions for the HP shell model are sufficiently near to design stress distributions, and it can be concluded that this method can be used to obtain the optimized cutting pattern of membrane structures.

  • PDF

Study on Laboratory Diagnosis of the Ebola Virus and Its Current Trends (에볼라 바이러스 진단법과 개발 동향에 관한 고찰 연구)

  • Jeong, Hye Seon;Kang, Yun-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.105-111
    • /
    • 2015
  • In late December 2013, the Ebola virus emerged from West Africa. The outbreak started in Guinea and rapidly spread to Liberia and Sierra Leone. Initially, the virus is spread to the human population after contact with infected wildlife and then spread person-to-person through direct contact with body fluids such as blood, sweat, urine, semen, and breast milk. The Ebola virus infects endothelial cells, mononuclear phagocytes and hepatocytes. It causes massive damage to internal tissues and organs, such as blood vessels and the liver, and ultimately death. Most tests for the virus RNA rely on a technology called reverse-transcriptase polymerase chain reaction (RT-PCR). While this method is highly sensitive, it is also expensive, requiring skilled scientists, and delicate power supplies. The strip analytical technique (enzyme-linked immunosorbent assay or ELISA) detects antigens or antibodies to the Ebola virus. This test is cheap and does not require electricity or refrigeration. Despite ongoing efforts directed at experimental treatments and vaccine development, current medical work on the Ebola viral disease is largely limited to supportive therapy. Thus, rapid and reliable diagnoses of the Ebola virus are critically important for patient management, infections, prevention, and control measures.

Experimental and Analytical Study on the Steel Beam bonded with CFRP Strip (레진으로 접착 보강한 강재보의 거동)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • In this paper, the behaviour of composite steel-CFRP members is studied experimentally and using FE-analysis. The use of advance composite materials in construction for repair and rehabilitation has become a frequent used method in the last decade. FRP composites have many advantages over the traditional technique of steel bonding for a number of reasons: 1. Composites add little or no additional weight to a building, eliminating the need for costly foundation strengthening. 2. FRP composites are very thin (1.2mm to 1.4mm). So there is no loss of floor space and negligible effect over the architectural aspect. 3. FRP composites do not corrode, this makes it long lasting. However, the method is yet to become a mainstream application due to a number of economical and design related issues. Brittle debonding failure, aging effect on bonding, broad based awareness and proper design guidelines are the main concern for future research works. This paper is focused on the ultimate load carrying capacity of the CFRP-strengthened beams and their effect on the deflection and failures modes by varying the amount of CFRP content.

Recent Applications of Molecularly Imprinted Polymers (MIPs) on Screen-Printed Electrodes for Pesticide Detection

  • Adilah Mohamed Nageib;Amanatuzzakiah Abdul Halim;Anis Nurashikin Nordin;Fathilah Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • The overuse of pesticides in agricultural sectors exposes people to food contamination. Pesticides are toxic to humans and can have both acute and chronic health effects. To protect food consumers from the adverse effects of pesticides, a rapid monitoring system of the residues is in dire need. Molecularly imprinted polymer (MIP) on a screen-printed electrode (SPE) is a leading and promising electrochemical sensing approach for the detection of several residues including pesticides. Despite the huge development in analytical instrumentation developed for contaminant detection in recent years such as HPLC and GC/MS, these conventional techniques are time-consuming and labor-intensive. Additionally, the imprinted SPE detection system offers a simple portable setup where all electrodes are integrated into a single strip, and a more affordable approach compared to MIP attached to traditional rod electrodes. Recently, numerous reviews have been published on the production and sensing applications of MIPs however, the research field lacks reviews on the use of MIPs on electrochemical sensors utilizing the SPE technology. This paper presents a distinguished overview of the MIP technique used on bare and modified SPEs for the detection of pesticides from four recent publications which are malathion, chlorpyrifos, paraoxon and cyhexatin. Different molecular imprint routes were used to prepare these biomimetic sensors including solution polymerization, thermal polymerization, and electropolymerization. The unique characteristics of each MIP-modified SPE are discussed and the comparison among the findings of the papers is critically reviewed.