• Title/Summary/Keyword: Strip Theory

Search Result 215, Processing Time 0.025 seconds

Buffeting response of long suspension bridges to skew winds

  • Xu, Y.L.;Zhu, L.D.;Xiang, H.F.
    • Wind and Structures
    • /
    • v.6 no.3
    • /
    • pp.179-196
    • /
    • 2003
  • A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.

A Novel Unequal Broadband Out-of-Phase Power Divider Using DSPSLs

  • Lu, Yun Long;Dai, Gao-Le;Li, Kai
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.116-123
    • /
    • 2014
  • In this paper, a novel unequal broadband out-of-phase power divider (PD) is presented. Double-sided parallel-strip lines (DSPSLs) are employed to achieve an out-of-phase response. Also, an asymmetric dual-band matching structure with two external isolation resistors is utilized to obtain arbitrary unequal power division, in which the resistors are directly grounded for heat sinking. A through ground via (TGV), connecting the top and bottom sides of the DSPSLs, is used to short the isolation components. Additionally, this property can efficiently improve the broadband matching and isolation bandwidths. To investigate the proposed divider in detail, a set of design equations are derived based on the circuit theory and transmission line theory. The theoretical analysis shows that broadband responses can be obtained as proper frequency ratios are adopted. To verify the proposed concept, a sample divider with a power division of 2:1 is demonstrated. The measured results exhibit a broad bandwidth from 1.19 GHz to 2.19 GHz (59.2%) with a return loss better than 10 dB and port isolation of 18 dB.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Three-Dimensional Free Vibration Analysis of Orthotropic Plates (직교이방성판의 3차원 자유진동 해석에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • This paper presents the three-dimensional stress analysis of orthotropic thick plates using the three-dimensional spline strip method based on the theory of elasticity. The orthotropic plates are made of Aragonite crystal and sitka spruce. To demonstrate the convergence and accuracy of the present method, several examples are solved, and results are compared with those obtained by other exact and numerical methods based on the theory of elasticity. Good convergence and accuracy are obtained. The effects of thickness/width ratio, aspect ratio and boundary conditions on normal stress distributions of Aragonite crystal plates and sitka spruce plates are investigated. Moreover, the difference of weak orthotropic and strong orthotropic properties given to the characteristics of stress distributions are also shown.

A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition (과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Lee, Seung-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

Effect of sweep angle on bifurcation analysis of a wing containing cubic nonlinearity

  • Irani, Saied;Amoozgar, Mohammadreza;Sarrafzadeh, Hamid
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.447-470
    • /
    • 2016
  • Limit cycle oscillations (LCO) as well as nonlinear aeroelastic analysis of a swept aircraft wing with cubic restoring moments in the pitch degree of freedom is investigated. The unsteady aerodynamic loading applied on the wing is modeled by using the strip theory. The harmonic balance method is used to calculate the LCO frequency and amplitude for the swept wing. Finally the super and subcritical Hopf bifurcation diagrams are plotted. It is concluded that the type of bifurcation and turning point location is sensitive to the system parameters such as wing geometry and sweep angle.

Development of The Multi Forming Type Progressive Die for Thin Sheet Metal

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.196-201
    • /
    • 2001
  • This study reveals the thin sheet metal process with multi-forming die that the name is progressive die, as a pilotless type, also high precision production part is made. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF

The Study on the Aeroelastic Stability of Hingeless Helicopter Rotor in Hover Considering Parametric Angle Changes (파라메타 각 변화를 고려한 힌지없는 헬리콥터 로우터의 공력탄성학적 안정성)

  • 한창헌;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.386-391
    • /
    • 1998
  • The effect of the changes in parameter angles(precone, droop, sweep) on the lead-lag damping was focused on. Experiment was made with hingeless 4-blade rotors and NACA 0012 airfoil. For the measurement of the rotating natural frequencies and lead-lag damping, non-rotating swash plate was oscillated at the regressing lag mode frequency and the data were acquired after the excitation was cut off. Analysis was made using a finite element formulation based on Hamilton's principle. The main blade is assumed as elastic beams. Quasi-steady strip theory is used to obtain aerodynamic forces, and non-circulatory forces are also included.

  • PDF

Ac Losses of Ag sheathed Bi-2223 High-$T_{c}$ Superconducting Wire (은 피복 Bi-2223 고온 초전도 선재의 교류손실)

  • 김영석;장현만;정종만;백승명;곽민환;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.54-57
    • /
    • 1999
  • AC losses per cycle properties at 77K have been investigated on the Ag sheathed Bi2223 wire through two kinds of measuring methods(transport method and magnetic method). In case of transport method, the absolute value of losses agree with the results of Norris theory(strip and ellipse). In case of 19-filamentary tape, AC transport losses almost agree with those of magnetic method. In case of 1-filamentary tape, However, AC losses of magnetic method is smaller than AC transport losses

  • PDF