• Title/Summary/Keyword: Strip Bending

Search Result 120, Processing Time 0.023 seconds

An Experimental Study on the Reinforcement Effect of Installed composite stiffener on Earth Retaining Walls using Stabilizing Piles (억지말뚝 흙막이공법에 설치된 복합버팀의 보강효과에 관한 실험적 연구)

  • Kim, Tae-Hyo;Im, Jong-Chul;Park, Lee-Keun;Kwon, Joung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1224-1239
    • /
    • 2008
  • The earth retaining walls using stabilizing piles can be applied to shallow excavation works without any stiffener. But, It demends a variety of installed composite stiffener on the earth retaining walls when it is installed as deep excavation works. Because, it causes an excessive displacement of walls. This research tried to overcome the problems created by the above issues and intended to apply the composite stiffener. The model test, focused on the effect of installed composite stiffener, measured the bending stress with stabilizing piles and walls, the settlement of earth surface, the displacement of walls for a step excavation and an increase in strip load. With the test results and soil deformation analysis, the reinforcement effect(relating to control displacement and earth presure) was analyzed in a qualitative and quantitative manner. It is expected to overcome a deep excavation works.

  • PDF

development of the High Utility Progressive Die for Sheet Metal Forming (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.231-235
    • /
    • 2000
  • Precision progressive die have used for above ten thousand pieces of lot size production part. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness : 2mm) is a specific division. In order to prevent the defects, the optimum design of the U-bending production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal pres working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Hygrothermoelasticity in a porous cylinder under nonlinear coupling between heat and moisture

  • Ishihara, Masayuki;Yoshida, Taku;Ootao, Yoshihiro;Kameo, Yoshitaka
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • The purpose of this study is to develop practical tools for the mechanical design of cylindrical porous media subjected to a broad gap in a hygrothermal environment. The planar axisymmetrical and transient hygrothermoelastic field in a porous hollow cylinder that is exposed to a broad gap of temperature and dissolved moisture content and is free from mechanical constraint on all surfaces is investigated considering the nonlinear coupling between heat and binary moisture and the diffusive properties of both phases of moisture. The system of hygrothermal governing equations is derived for the cylindrical case and solved to illustrate the distributions of hygrothermal-field quantities and the effect of diffusive properties on the distributions. The distribution of the resulting stress is theoretically analyzed based on the fundamental equations for hygrothermoelasticity. The safety hazard because of the analysis disregarding the nonlinear coupling underestimating the stress is illustrated. By comparing the cylinder with an infinitesimal curvature with the straight strip, the significance to consider the existence of curvature, even if it is infinitesimally small, is demonstrated qualitatively and quantitatively. Moreover, by investigating the bending moment, the necessities to consider an actual finite curvature and to perform the transient analysis are illustrated.

The Effect of Roll Arrangement in the Cold Rolling Mill on the Wear (냉간 압연기용 롤의 배열이 마멸에 미치는 영향)

  • 손영지
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.74-80
    • /
    • 1999
  • Work roll wear in the cold rolling of mild steel strip is strongly affected by rolling materials, rolling conditions such as roll arrangement in the cold rolling mill and lubrication. The tests were performed to find the effects of roll arrangement n the cold rolling mill on the work roll wear under the same lubricating conditions. The obtained results are as follows:If the distance of cold rolling is about 60km, the surface roughness of its was reduced by half(Ra 0.49${\mu}{\textrm}{m}$) and Pc(peak count) also was decreased to 60 ea/cm.It is easier for CC(Continuous casting) to make a slip on rolling than IC(Ingot casting). It is due to surface mirror in which first residual product appears and iron powder included Al2O3 is sticked. Because bending degree of 4Hi-rolling mill is higher than 6Hi-rolling mill, the first surface mirror was occurred to its center-point which is loaded strongly. 6Hi-rolling mill shape-controlled by intermediate roll doesn't need the initial crown to work roll. Therefore, fatigue and wear would appear a little bit.

  • PDF

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

Analysis on the Dynamic Respone of the Hull Structure due to Slamming Impact - By Finite Element Method - (슬래밍 충격을 받는 선체의 동적 응답해석 -유한요소법으로-)

  • Hong, Bong-Ki;Moon, Duk-Hong;Bae, Dong-Myung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 1983
  • In rough seas, actual behaviours of a ship may not be estimated by the linear strip theory, because of Nonlinearities due to the hull shape, bottom slamming and bottom and/or bow-flare slamming. In case of slamming, impulsive hydrodynamic pressure occurs on the fore body surface of the ship, resulting hull vibration called whipping, by which the ship may suffer from serious structural damages and the impact pressure, depends critically on the relative velocity at re-entry. In this paper, the Time history of impact froce at each station, the longitudinal distribution of impact force at critical time, the Time history of acceleration at F.P. and the Time history of Bending moment at midship are illustrated. That is, authors analyzed Dynamic response of container ship to be subjected slamming impact force.

  • PDF

Strain distribution between CFRP strip and concrete at strengthened RC beam against shear

  • Anil, Ozgur;Bulut, Nalan;Ayhan, Murat
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.509-525
    • /
    • 2012
  • In recent years, CFRP material usage in strengthening applications gradually became widespread. Especially, the studies on the strengthening of shear deficient reinforced concrete beams with CFRP strips are chosen as a subject to numerous experimental studies and research on this subject are increased rapidly. The most important variable, that is affected on the failure mode of CFRP strips and that is needed for determining the shear capacity of the strengthened reinforced concrete beams, is the strain distribution between CFRP strips and concrete. Numerous experimental studies are encountered in the literature about the determination of strain distribution between CFRP strips and concrete. However, these studies mainly focused on the CFRP strips under axial tension. There are very limited numbers of experimental and analytic studies examining the strain distribution between concrete and CFRP strips, which are under combined stresses due to the effects of shear force and bending moment. For this reason, existing experimental study in the literature is used as model for ANSYS finite element software. Nonlinear finite element analysis of RC beams strengthened against shear with CFRP strips under reverse cyclic loading is performed. The strain distributions between CFRP strips and concrete that is obtained from finite element analysis are compared with the results of experimental measurements. It is seen that the experimental results are consisted with the results derived from the finite element analysis and important findings on the strain distribution profile are reached by obtaining strain values of many points using finite element method.

Generation & Application of Nonlinear Wave Loads for Structural Design of Very Large Containerships (초대형 컨테이너선 구조 설계를 위한 비선형 파랑하중 생성 및 적용)

  • Jung Byoung Hoon;Ryu Hong Ryeul;Choi Byung Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.15-21
    • /
    • 2005
  • In this paper, the procedure of generation and application of nonlinear wave loads for structural design of large container carrier was described. Ship motion and wave load was calculated by modified strip method. Pressure acting on wetted hull surface was calculated taking into account of relative hull motion to the wave. Design wave height was determined based on the most sensitive wave length considering rule vertical wave bending moment at head sea or fellowing sea condition. And the enforced heeling angie concept which was introduced by Germanischer Lloyd (GL) classification had been used to simulate high torsional moment in way of fore hold parts similar to actual sea going condition. Using wave load generated from this dynamic load calculation, FE analyses were performed. With this result, yielding, buckling, hatch diagonal deflection and fatigue strength of hatch corners were reviewed based on the requirement of GL classification. The results of FE analysis show good compatibility with GL classification.

  • PDF

A Study on the Evaluation of Seakeeping Performance with Ship Types (선박 종류에 따른 내항성능 평가에 관한 연구)

  • 김순갑;박문수;공길영
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.2
    • /
    • pp.19-40
    • /
    • 1994
  • Several factors can be chosen for evaluating seakeeping performance, such as deck wetness, propeller racing, slamming, rolling, vertical acceleration and vertical bending moment, in consi-deration of the safety of human being, cargo and ship. In fact, there are few developments for an evalua-tion method of seakeepting performance correponding with each ship's characteristics. The purpose of this paper is to develop an quantitative evaluation method of seakeeping performance according to ship types. The scope and the method of this study are as follow. (1) Obtain each response amplitude of ship's motion in waves by Ordinary Strip Method and apply it to short-crested, irregular wave for random process of the factors on seakeeping performance. (2) Define the evaluation index, the dangerousness, the maximum dangerousness and the evaluation diagram. (3) Figure out the different characteristics according to ship types by computer simulation of evaluating seakeeping performance. (4) Adopt vertical acceleration and one of rolling or lateral acceleration as the factors on seakeeping performance by clarifying the correlation of stochastic process. This study developed an evaluation method coincident with each ship's characteristics, and suggested a device for application to actual ship. This method might be useful in developing the practical system of seakeeping performance in accordance with ship types. The ship models for computer simulation are 175m container ship types, 93m tranning ship HANARA as passenger ship type, 259m bulk-carrier type and 164m pure car-carrier type.

  • PDF