• Title/Summary/Keyword: Stretchable Display

Search Result 15, Processing Time 0.049 seconds

Research on Secure Keypads for Mobile Devices with Stretchable Displays (스트레처블 디스플레이가 적용된 모바일 기기의 보안 키패드 연구)

  • Dongmin Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.885-890
    • /
    • 2024
  • This study proposes a secure keypad structure that can adapt to screen changes in mobile devices equipped with stretchable display. For this purpose, we compared and analyzed the authentication methods applied to current rigid form factor smartphones with those applied to rollable and bendable display based smartphones, which are the previous stages of stretchable display. Based on the results of this analysis, we identified potential user convenience and security safety issues that may arise in the form factor structure for smart wallets, multitasking, screen expansion and media viewing, and gaming and entertainment applications where stretchable displays will be applied, then proposed a security keypad structure for these form factors. Our keypad structure provides enhanced user convenience and security compared to the structures applied in the smartphone environment based on the conventional rigid display form factor and rollable, bendable display form factor.

A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization (스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구)

  • Min-Jun-Yi;Jin-Won-Bae;Su-Yeon-Park;Jae-Ik-Choi;Geon-Ho-Kim;Jong-Hyun-Seo
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.2
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.

Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics (유연·신축성 전자 소자 개발을 위한 은 나노와이어 기반 투명전극 기술)

  • Kim, Dae-Gon;Kim, Youngmin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.

Development of Innovative Product Designs with Stretchable Displays Based on User's Expected Experience

  • Seung Eun Chung;Youjin Seo;Han Young Ryoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2346-2365
    • /
    • 2024
  • This research identifies specific user experience factors that have positive impact on user's behavior intention to use so that a new technology called stretchable display(SD) can be accepted and spread in the market. To show how these factors can be applied to SD home appliances, a few concrete designs have been suggested. In the first stage of the research, the initial concept of innovative product design with stretchable display was derived by developing a scenario that solves the expected experience by home product users through the attributes of the SD technology. In the second stage, a scenario of the product to which a stretchable display was applied was suggested to investigate the expected experience factors that influence the behavior intention to use. As a result of the analysis, users showed a positive intention to use for the factors of Functionality of Space and Life Support, Presentation of Preferences, and Customization of Emotions, provided by the product with SD technology applied. In the next stage, based on the verified user experience factors, multifunctional kitchen appliances design, smart furniture design with flexible surfaces, and smart interior wall tile design have been derived. After all, the differentiated transformable interface designs shown through this process have been suggested as three-dimensional soft-physical button design and attachable design for multi-curved soft furniture. This study is significant as it emphasizes a user-centered design process over a technology-centered approach, enhancing market acceptability and focusing on design features aligned with the user's expected experience.

AMOLED Display Technologies and Recent Trends - Focusing on Flexible Display Technology - (AMOLED 디스플레이 주요 기술 및 최근 동향 - 플렉서블 디스플레이 기술 위주로 -)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Advanced Industrial SCIence
    • /
    • v.1 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • Starting with cathode ray tubes, displays are forming markets in the order of active marix organic light emitting diode (AMOLED) after PDP (Plasma Display Panel) and LCD (Liquid Crystal Display). OLED is recognized as a key field for the development of each country preparing for the fourth industrial revolution, and especially Samsung Display and LG Display, which are the top industries in Korea, are leading the market with more than 90% of OLED shares. Currently, AMOLED has moved to the area that can be folded or bent. This technology is possible because TFT (Thin Film Transistor) and OLED may be formed on a flexible substrate. In the future, the technology will move to stretchable displays, and for this, the development of substrate materials is first, and then TFT and OLED devices should also be implemented with stretchable materials.

Stretchable Transistors Fabricated on Polydimethylsiloxane Elastomers

  • Jung, Soon-Won;Choi, Jeong Seon;Park, Chan Woo;Na, Bock Soon;Lim, Sang Chul;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong;Koo, Jae Bon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.389.2-389.2
    • /
    • 2014
  • Polydimethylsiloxane (PDMS) based electronic devices are widely used for various applications in large area electronics, biomedical wearable interfaces and implantable circuitry where flexibility and/or stretchability are required. A few fabrication methods of electronic devices directly on PDMS substrate have been reported. However, it is well known that micro-cracks appear in the metal layer and in the lithography pattern on a PDMS substrate. To solve the above problems, a few studies for fabrication of stiff platform on PDMS substrate have been reported. Thin-film islands of a stiff region are fabricated on an elastomeric substrate, and electronic devices are fabricated on these stiff islands. When the substrate is stretched, the deformation is mainly accommodated by the substrate, and the stiff islands and electronic devices experience relatively small strains. Here, we report a new method to achieve stiff islands structures on an elastomeric substrate at a various thickness, as the platform for stretchable electronic devices. The stiff islands were defined by conventional photolithography on a stress-free elastomeric substrate. This technique can provide a practical strategy for realizing large-area stretchable electronic circuits, for various applications such as stretchable display or wearable electronic systems.

  • PDF

Analysis of Homogenized Laser Beam Display by a Polymeric Stretchable Diffuser (스트레쳐블 폴리머 디퓨저를 이용한 균질 레이저 디스플레이 해석)

  • Lee, Jae-Won;Lee, Seon-Bong;Choi, Hae-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • A stretchable polymeric membrane shaped diffuser was used to homogenize the coherent laser beam. The developed RGB module was used to focus and defocus test by beam combiners. Average oscillation frequency was set at 180Hz~300Hz and it resulted in the best homogenization effect in visual range. The blue laser module turned out to be the worst case for the transmission and primary reason is believed to be the short length of irradiated laser beam. The developed system removed the speckling and the brightness was decreased by 10 ~ 20% for the RGB laser. Overall the brightness was decreased by 13% and homogenity with respect to the temporal axis was improved from 30fs to 110fs.

Silver Nanowire-based Stretchable and Transparent Electrodes (Silver Nanowire 기반 Stretchable 투명 전극)

  • Lee, Jin-Young;Kim, Su-Yeon;Jeong, Da-Hye;Shin, Dong-Kyun;Yoo, Su-Ho;Seo, Hwa-Il;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.51-55
    • /
    • 2015
  • We have fabricated silver nanowire (AgNW) films as a stretchable and transparent electrode on polydimethylsiloxane (PDMS) substrates using a spray coater. Inherently, they show poor surface roughness and stretchability. To tackle it, we have employed a conductive polymer, poly (3,4-ethylenedioxythiophene) : Poly(styrene sulfonate) (PEDOT : PSS). PEDTO : PSS solution is mixed with AgNWs or spin-coated on the AgNW film. Compared with AgNW film only, PEDOT : PSS film only, and polymer-mixed AgNW films, the AgNW/polymer bilayer films exhibit much better surface roughness and stretchability. It is found that spray-coating of AgNWs on uncured PDMS and spin-coating of PEDOT : PSS solution on the AgNW films enhance the surface roughness of electrodes. Such a bilayer structure also provides a stable resistance under tensile strain due to the fact that each layer acts as a detour route for carriers. With this structure, we have obtained the peak-to-peak roughness ($R_{pv}$) as low as 76.8nm and a moderate increase of sheet resistance (from $10{\Omega}/{\Box}$ under 0% strain to $30{\Omega}/{\Box}$ under 40% strain).

A Hybrid Bilayer Pressure Sensor based on Silver Nanowire (은 나노와이어 기반 하이브리드 이중층 압력 센서)

  • Lee, Jin-Young;Shin, Dong-Kyun;Kim, Ki-Eun;Seo, Yu-Seok;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.31-35
    • /
    • 2017
  • We have fabricated flexible and stretchable pressure sensors using silver nanowires (AgNWs) and analyzed their electric responses. AgNWs are spray coated directly onto uncured polydimethylsiloxane (PDMS) such that AgNWs penetrate into the uncured PDMS, enhancing the adhesion properties of AgNWs. However, the single-layered AgNW sensor exhibits unstable electric response and low pressure sensitivity. To tackle it, we have coated a conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto the AgNW layer. Such a hybrid bilayer sensor ensures a stable electric response because the over-coating layer of PEDOT:PSS effectively suppresses the protrusion of AgNWs from PDMS during release. To enhance the sensitivity further, we have also fabricated a stacked bilayer AgNW sensor. However, its electric response varies depending sensitively on the initial overlap pressure.

  • PDF

A Study on the E-textiles Dip-Coated with Electrically Conductive Hybrid Nano-Structures

  • Lee, Euna;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.21 no.6
    • /
    • pp.16-30
    • /
    • 2017
  • Currently, e-textile market is rapidly expanding and the emerging area of e-textiles requires electrically conductive threads for diverse applications, including wearable innovative e-textiles that can transmit/receive and display data with a variety of functions. This study introduces hybrid nano-structures which may help increase the conductivity of the textile threads for use in wearable and flexible smart apparels. For this aim, Ag was selected as a conductive material, and yarn treatment was implemented where silver nanowire (AgNW) and graphene flake (GF) hybrid structures overcome the limitations of the AgNW alone. The yarn treatment includes several treatment conditions, e.g., annealing temperature, annealing time, binder material such as polyurethane (PU), coating time, in order to search for the optimum method to form stable conductive nano-scale composite materials as thin film on the surface of textile yarns. Treatedyarns showed improved electrical resistance readings. The functionality of the spandex yarn as a stretchable conductive thread was also demonstrated. When the yarn specimens were treated with colloid of AgNW/GF, relatively good electrical conductivity value was obtained. During the extension and recovery cycles of the treated yarns, the initial resistance values did not deteriorate significantly, since the network of nanowire structure with the support of GF and polyurethane stayed flexible and stable. Through this research, it was found that when one-dimensional structure of AgNW and two-dimensional structure of GF were mixed as colloids and treated on the surface of textile yarns, flexible and stretchable electrical conductor could be formed.