• Title/Summary/Keyword: Stretch sensor

Search Result 25, Processing Time 0.018 seconds

Development of Tight-Fitting Garments with a Portable ECG Monitor to Measure Vital Signs (휴대용 심전도 기기와 직물형 전극을 이용한 생체정보 측정용 밀착 의복 개발)

  • Jeong, Yeon-Hee; Kim, Seung-Hwan;Yang, Young-Mo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.112-125
    • /
    • 2010
  • A Holter monitor is used for ECG monitoring of ambulatory daily life in hospital. However, the use of this apparatus causes skin allergies and discomfort in patients because of the attachment gel and tapes used to attach disposable electrodes to the skin. In this study, the development of tight-fitting clothing connected to a portable Holter monitor was proposed. In addition, the use of conductive fabrics as electrodes was proposed; this will enable the use of garments in u-health care for measuring ECG signals. The male subjects were university students in the ages of 20 to 24. Subjective wear sensations of the experimental garments were rated using seven Likert scales. A Likert type scale was used for the evaluation and a 7 point score indicates that it provided the best fit as a tight-fitting upper clothing. Clothing pressure was measured using an air-pack-type pressure sensor (model AMI 3037-2) at 4 locations (the conductive fabric electrode) As results, a male basic sloper for upper clothing was developed and that pattern was manipulated to the tight fit pattern by considering the reduction rate of the percentage stretch in the fabric. The developed tight-fitting garment was superior in terms of subjective sensation and 6t. The mean pressure of the garment with reduction rates of 40% in width and of 50% in length was 8.45gf/$cm^2$. A conductive fabric electrode was developed by considering the sewing method and the developed electrode was detected well. The ECG data were recorded for 13 hr 19 min 44 sec and the artifacts in the ECG signals were recorded for 9 hr 3 min 46 sec (total time: 22 hr 23 min 23 sec). The artifacts data were obtained during heavy activities.

The Development of Fitted Sports Wear for Safety and Protection Using Conductive Yarn Embroidery (전도사 자수를 이용한 안전보호용 밀착형 스포츠웨어 개발)

  • Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.156-169
    • /
    • 2019
  • The objective of this study was to develop lightweight, stretchable, tight-fit smart sportswear using the conductive yarns into the garment and demonstrating its usefulness. Sportswears with the ability to control LEDs with respect to lighting of the surrounding were developed by applying embroidery with conductive yarns to 2 types of men's T-shirts and 2 types of women's leggings pants for outdoor activities and exercise purposes. LEDs were applied to the front and back of men's T-shirts and to the rear of the waist of women's leggings. Men's T-shirts were printed where the LEDs were to be applied, and inside, they were embroidered with conductive threads on the hot-melt fabric to be attached, and then connected with LED. Women's pants were embroidered on the elastic band, in the form of a sine wave that gives it ability to stretch, and finally the elastic band was hidden inside the waistband. The operation of the light sensor in the dark provided the ability to protect joggers from night drivers or cyclists. LEDs were activated when the wearer turns on the fashionable device on his/her shoulder by pressing it. It was able to reduce the risk of accidents by giving recognizability to vehicles, bicycles, and athletes approaching or passing by at night, and securing safe distance from vehicles, etc. Internal embroidery technology had the same flexible and lightweight functions as ordinary clothing products, making it possible to apply to tight-fit smart T-shirts or leggings pants designs.

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.

Development of Elbow Wearable Robot for Elderly Workers (고령층 근로자들을 위한 팔꿈치 착용형 로봇의 개발)

  • Lee, Seok-Hoon;Lee, Si-Haeng;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.617-624
    • /
    • 2015
  • This paper describes the development of a wearable robot to assist the elbow muscle for use by elderly workers in aging societies. Various previously developed wearable robots have drawbacks in terms of their price, portability, and slow recognition of the wearer's intention. In this paper, emphasis is placed on the following features to minimize these drawbacks. The first feature is that an actuator is attached only at the elbow joint that withstands the highest moment during arm motion to reduce the weight, volume, and price of the robot and increase its practicality. The second is that operation of the wearable robot is divided into two modes, a tracking mode and a muscle strengthening mode, and the robot can automatically switch between these modes by analyzing the wearer's intention through the brachial muscle strength measuring device developed in this study. The assistive performance of the developed wearable robot is experimentally verified by motion tracking experiments without an external load and muscle strengthening experiments with an external load. During the muscle strengthening experiments, the power of the muscle of the upper arm is measured by a commercial electromyography (EMG) sensor. Motion tracking performance at a speed of $120^{\circ}/s$ and muscle assistance of over 60 % were obtained using our robot.

A Study on the Development of Sleep Monitoring Smart Wear based on Fiber Sensor for the Management of Sleep Apnea (수면 무호흡증 관리를 위한 섬유센서 기반의 슬립 모니터링 스마트 웨어 개발에 관한 연구)

  • Park, Jin-Hee;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.89-100
    • /
    • 2019
  • Sleep apnea, a medical condition associated with a variety of complications, is generally monitored by standard sleep polysomnography, which is expensive and uncomfortable. To overcome these limitations, this study proposes an unconstrained wearable monitoring system with stretch-fiber sensors that integrate with the wearer's clothing. The system allows patients to undergo examinations in a familiar environment while minimizing the occurrence of skin allergies caused by adhesive tools. As smart clothing for adult males with sleep apnea, long-sleeved T-shirts embedding fibrous sensors were developed, enabling real-time monitoring of the patients' breathing rate, oxygen saturation, and airflow as sleep apnea diagnostic indicators. The gauge factor was measured as 20.3 in sample 4. The maximum breathing intake, measured during three large breaths, was 2048 ml. the oxygen saturation was measured before and during breath-holding. The oxygen saturation change was 69.45%, showing a minimum measurable oxygen saturation of 70%. After washing the garment, the gauge factor reduced only to 18.0, confirming the durability of the proposed system. The wearable sleep apnea monitoring smart clothes are readily available in the home and can measure three indicators of sleep apnea: respiration rate, breathing flow and oxygen saturation.