• Title/Summary/Keyword: Stress-strength

Search Result 5,793, Processing Time 0.036 seconds

Fatigue Strength of Fillet Welded Steel Structure Under Out-of-plane Bending Load

  • Kang, S.W.;Kim, W.S.;Paik, Y.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.33-39
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Proposal of Bond Strength Evaluation Method for Overlay Concrete at Field (유한요소해석을 이용한 현장 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • Lee, Bong-Hak;Hong, chang-Woo;Lee, Joo-Hyung;Kim, Seong-Hwan
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.295-300
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction defends upon band strength between old and the new concrete. Current adhesion strength measurement method is inaccurate method that ignore effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5 cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

Proposal of Bond Strength Evaluation Method for Bridge Deck Overlay (교면 덧씌우기 콘크리트의 부착강도 평가 방법 제안)

  • 장흥균;홍창우;정원경;이봉학;윤경구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.349-354
    • /
    • 2002
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesion strength measurement method ignores the effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

A fracture criterion for high-strength steel cracked bars

  • Toribio, J.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.209-221
    • /
    • 2002
  • In this paper a fracture criterion is proposed for cracked cylindrical samples of high-strength prestressing steels of different yield strength. The surface crack is assumed to be semi-elliptical, a geometry very adequate to model sharp defects produced by any subcritical mechanism of cracking: mechanical fatigue, stress-corrosion cracking, hydrogen embrittlement or corrosion fatigue. Two fracture criteria with different meanings are considered: a global (energetic) criterion based on the energy release rate G, and a local (stress) criterion based on the stress intensity factor $K_I$. The advantages and disadvantages of both criteria for engineering design are discussed in this paper on the basis of many experimental results of fracture tests on cracked wires of high-strength prestressing steels of different yield strength and with different degrees of strength anisotropy.

Strength criterion of plain recycled aggregate concrete under biaxial compression

  • He, Zhen-Jun;Liu, Gan-Wen;Cao, Wan-Lin;Zhou, Chang-Yang;Jia-Xing, Zhang
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.209-222
    • /
    • 2015
  • This paper presents results of biaxial compressive tests and strength criterion on two replacement percentages of recycled coarse aggregate (RPRCA) by mass for plain structural recycled aggregate concrete (RAC) at all kinds of stress ratios. The failure mode characteristic of specimens and the direction of the cracks were observed and described. The two principally static strengths in the corresponding stress state were measured. The influence of the stress ratios on the biaxial strengths of RAC was also analyzed. The experimental results showed that the ratios of the biaxial compressive strength ${\sigma}_{3f}$ to the corresponding uniaxial compressive strength $f_c$ for the two RAC are higher than that of the conventional concrete (CC), and dependent on the replacement percentages of recycled coarse aggregate, stress states and stress ratios; however, the differences of tensile-compressive ratios for the two RAC and CC are smaller. On this basis, a new failure criterion with the stress ratios is proposed for plain RAC under biaxial compressive stress states. It provides the experimental and theoretical foundations for strength analysis of RAC structures subject to complex loads.

Bayes Estimation of Stress-Strength System Reliability under Asymmetric Loss Functions

  • Hong, Yeon-Woong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.3
    • /
    • pp.631-639
    • /
    • 2003
  • Bayes estimates of reliability for the stress-strength system are obtained with respect to LINEX loss function. A reference prior distribution of the reliability is derived and Bayes estimates of the reliability are also obtained. These Bayes estimates are compared with corresponding estimates under squared-error loss function.

  • PDF

Maximum concrete stress developed in unconfined flexural RC members

  • Ho, J.C.M.;Pam, H.J.;Peng, J.;Wong, Y.L.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.207-227
    • /
    • 2011
  • In flexural strength design of unconfined reinforced concrete (RC) members, the concrete compressive stress-strain curve is scaled down from the uni-axial stress-strain curve such that the maximum concrete stress adopted in design is less than the uni-axial strength to account for the strain gradient effect. It has been found that the use of this smaller maximum concrete stress will underestimate the flexural strength of unconfined RC members although the safety factors for materials are taken as unity. Herein, in order to investigate the effect of strain gradient on the maximum concrete stress that can be developed in unconfined flexural RC members, several pairs of plain concrete (PC) and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads. From the test results, the maximum concrete stress developed in the eccentric specimens under strain gradient is determined by the modified concrete stress-strain curve obtained from the counterpart concentric specimens based on axial load and moment equilibriums. Based on that, a pair of equivalent rectangular concrete stress block parameters for the purpose of flexural strength design of unconfined RC members is determined.

Stress-Strength model with Dependency (종속 관계의 스트레스-강도 모형)

  • Kim, Dae-Kyung;Kim, Jin-Woo;Park, Dong-Ho
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.319-330
    • /
    • 2011
  • We consider the stress-strength model in which a unit of strength $T_2$ is subjected to environmental stress $T_1$. An important measure considered in stress-strength model is the reliability parameter R=P($T_2$ > $T_1$). The greater the value of R is, the more reliable is the unit to perform its specified task. In this article, we consider the situations in which $T_1$ and $T_2$ are both independent and dependent, and have certain bivariate distributions as their joint distributions. To study the effect of dependency on R, we investigate several bivariate distributions of $T_1$ and $T_2$ and compare the values of R for these distributions. Numerical comparisons are presented depending on the parameter values as well.

Fatigue Life Prediction and Strength Evaluation of Shot Peened Parts (쇼트피이닝한 부재의 피로수명 예측 및 피로강도 평가)

  • Kim, Hwan-Du;Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.75-87
    • /
    • 1985
  • A review was performed on fatigue life prediction and strength evaluation of shot peened parts. Fatigue strength of machine parts can be improved by shot peening due to compressive residual stresses on such parts. Compressive residual stress cannot be uniquely define by peening intensity. Several measuring methods of residual stress and the principle of hole drilling method are presented. Exploratory measurement of residual stress was performed on the shot peened SM35C plate with the hole drilling method. Fatigue life and failure location of shot peened parts under bending load can be predicted by a damage parameter which is incorporated with material properties, residual stress, and applied stress conditions. Some method are presented to predict the fatigue strength of shot peened parts at any given life. Shot peening gives its full benefit to the notched machine parts of high strength steels.

  • PDF

A study on torsional strength of induction hardened axle shaft (고주파 열처리를 고려한 액슬 축 비틀림 거동 연구)

  • Kang, Dae-Hyun;Lee, Bum-Jae;Yun, Chang-Bae;Kim, Kang-Wuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF