• Title/Summary/Keyword: Stress-related hormone

Search Result 73, Processing Time 0.024 seconds

Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

  • Bo Kyeong Do;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.77-83
    • /
    • 2024
  • Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells

  • Lee, Geum-A;Choi, Kyung-Chul;Hwang, Kyung-A
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.503-511
    • /
    • 2018
  • Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS ($0.1-10{\mu}M$), BPA ($0.1-10{\mu}M$) and E2 ($0.01-0.0001{\mu}M$) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem ($30{\mu}M$) or DIM ($15{\mu}M$). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as $eIF2{\alpha}$ and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.

Immobilization stress increased cytochrome P450 1A2 (CYP1A2) expression in the ovary of rat

  • Hwang, Jong-Chan;Kim, Hwan-Deuk;Park, Byung-Joon;Jeon, Ryoung-Hoon;Baek, Su-Min;Lee, Seoung-Woo;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Under the stressed condition, a complex feedback mechanism for stress is activated to maintain homeostasis of the body and secretes several stress hormones. But these stress hormones impair synthesis and secretion of the reproductive hormones, followed by suppression of ovarian function. Cytochrome P450 1A2 (CYP1A2) plays a major role in metabolizing exogenous substances and endogenous hormones, and its expression is recently identified at not only the liver but also several organs with respect to the pancreas, lung and ovary. Although the expression of CYP1A2 can be also affected by several factors, understanding for the changed pattern of the ovarian CYP1A2 expression upon stress induction is still limited. Therefore, CYP1A2 expression in the ovaries from immobilization stress-induced rats were assessed in the present study. The stress-induced rats in the present study exhibited the physiological changes in terms of increased stress hormone level and decreased body weight gains. Under immunohistological observation, the ovarian CYP1A2 expression in both control and the stressed ovary was localized in the antral to pre-ovulatory follicles. However, its expression level was significantly (p < 0.01) higher in the stress-induced group than control group. In addition, stress-induced group presented more abundant CYP1A2-positive follicles (%) than control group. Since expression of the ovarian CYP1A2 was highly related with follicle atresia, increased expression of CYP1A2 in the stressed ovary might be associated with changes of the ovarian follicular dynamics due to stress induction. We hope that these findings have important implications in the fields of the reproductive biology.

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF

Corticotropin-Releasing Factor Down-Regulates Hair Growth-Related Cytokines in Cultured Human Dermal Papilla Cells (사람 모유두세포에서 코르티코트로핀분비인자에 의한 모발성장관련사이토카인의 발현 조절)

  • Lee, Eun Young;Jeon, Ji Hye;Lee, Min Ho;Lee, Sunghou;Kim, Young Ho;Kang, Sangjin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Corticotropin-releasing factor (CRF) is involved in the stress response and there is increasing evidence that stress influences skin disease such as hair loss. In cultured human hair follicles, CRF inhibits hair shaft elongation, induces premature regression and promotes the apoptosis of hair matrix keratinocytes. We investigated whether CRF influences the dermal papilla cells (DPC) that play pivotal roles in hair growth and cycling. Human DPCs were treated with CRF, adrenocorticotropic hormone (ACTH) and cortisol, key stress hormones along the hypothalamic-pituitary -adrenal (HPA) axis for 1-24 h. Interestingly, CRF modulated the expression of cytokines related to hair growth (KGF, Wnt5a, $TGF{\beta}-2$, Nexin) and increased cAMP production in cultured DPCs. CRF receptors were down-regulated by negative feedback systems. Pretreatment of CRF receptor antagonists or protein kinase A (PKA) inhibitor prevented the CRF-induced modulation. Since the CRF induces proopiomelanocortin (POMC) expression through the cAMP/PKA pathway, we analyzed POMC mRNA. CRF stimulated POMC expression in cultured human DPCs, yet we were unable to detect ACTH levels by western blot. These results indicate that CRF operates within DPCs through CRF receptors along the classical CRF signaling pathway and CRF receptor antagonists could serve as potential therapeutic and cosmetic agents for stress-induced hair loss.

Analysis of online parenting community posts on expanded newborn screening for metabolic disorders using topic modeling: a quantitative content analysis (토픽 모델링을 활용한 광범위 선천성 대사이상 신생아 선별검사 관련 온라인 육아 커뮤니티 게시 글 분석: 계량적 내용분석 연구)

  • Myeong Seon Lee;Hyun-Sook Chung;Jin Sun Kim
    • Women's Health Nursing
    • /
    • v.29 no.1
    • /
    • pp.20-31
    • /
    • 2023
  • Purpose: As more newborns have received expanded newborn screening (NBS) for metabolic disorders, the overall number of false-positive results has increased. The purpose of this study was to explore the psychological impacts experienced by mothers related to the NBS process. Methods: An online parenting community in Korea was selected, and questions regarding NBS were collected using web crawling for the period from October 2018 to August 2021. In total, 634 posts were analyzed. The collected unstructured text data were preprocessed, and keyword analysis, topic modeling, and visualization were performed. Results: Of 1,057 words extracted from posts, the top keyword based on 'term frequency-inverse document frequency' values was "hypothyroidism," followed by "discharge," "close examination," "thyroid-stimulating hormone levels," and "jaundice." The top keyword based on the simple frequency of appearance was "XXX hospital," followed by "close examination," "discharge," "breastfeeding," "hypothyroidism," and "professor." As a result of LDA topic modeling, posts related to inborn errors of metabolism (IEMs) were classified into four main themes: "confirmatory tests of IEMs," "mother and newborn with thyroid function problems," "retests of IEMs," and "feeding related to IEMs." Mothers experienced substantial frustration, stress, and anxiety when they received positive NBS results. Conclusion: The online parenting community played an important role in acquiring and sharing information, as well as psychological support related to NBS in newborn mothers. Nurses can use this study's findings to develop timely and evidence-based information for parents whose children receive positive NBS results to reduce the negative psychological impact.

The Effects Liquid Stick Packs of Dongshingihyeolyangsubang on Stress and Sleep-Related Substance of Rats Induced by Chronic Mild Stress (동신기혈양수방(東新氣血養睡方) 액상 스틱 파우치가 Chronic Mild Stress 유발 흰쥐의 스트레스 및 수면 관련 호르몬에 미치는 영향)

  • Choi, Chang-won;Lee, Young-su;Moon, Young-ho;Kim, Kyeong-ok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.28 no.3
    • /
    • pp.231-248
    • /
    • 2017
  • Objectives: This study evaluates anti-stress and sleep-inductive effects of Dongshingihyeolyangsubang (DSGYSB) on rats induced by chronic mild stress (CMS). Methods: Twenty-five healthy rats were randomly divided into five groups: normal, CMS (Control), DSGYSB50, DSGYSB100, and DSGYSBS200. All rats except the normal group were exposed to unpredictable stress conditions such as water deprivation, empty bottles, and forced treadmill. A week after starting the experiment, rats in DSGYSB50, DSGYSB100, and DSGYSB200 groups were fed orally with water once a day for two weeks. Then blood samples were taken from the rats for analysis of complete blood count, AST, ALT, and glucose. Noradrenaline, corticosterone, serotonin, GABA and melatonin were measured by ELISA kit. BDNF, CREB, TrkB and $TNF-{\alpha}$ were measured by RT-PCT. Results: In Noradrenaline contents, the DSGYSB200 group revealed significant decrease compared to the control group. In corticosterone contents, the DSGYSB200 group revealed significant decrease compared to the control group. In serotonin contents, the DSGYSB200 group revealed significant increase compared to the control group. In GABA contents, the DSGYSB50, DSGYSB100, and DSGYSB200 groups revealed significant increase compared to the control group. In the activity of BDNF, the DSGYSB50, DSGYSB100 and DSGYSB200 groups revealed significant increase compared to the control group. In the activity of CREB, the DSGYSB100 and DSGYSB200 groups revealed a significant decrease compared to the control group. In the activity of TrkB, the DSGYSB100 and DSGYSB200 groups revealed significant decrease compared to the control group. In the activity of $TNF-{\alpha}$, DSGYSB100 and DSGYSB200 groups revealed significant decrease compared to the control group. In glucose contents, the DSGYSB100 and DSGYSB200 groups revealed significant decrease compared to the control group. In the leukocyte changes, white blood cells, neutrophil, lymphocytes, and monocyte significantly increased in the DSGYSB100 and DSGYSB200 groups than the control group. In the erythrocyte changes, hemoglobin significantly increased in the DSGYSB200 group than the control group. Conclusions: Results suggest that Dongshingihyeolyangsubang has anti-stress and sleep-inductive effects on rats induced by CMS.

Anti-Graying Effect of Pueraria Lobata Root Extract on Stress-Induced Hair Graying (갈근 추출물의 스트레스성 백모 형성 억제 효과)

  • Hong, Min Jung;Park, Byung Cheol;Hong, Yong Deog;Kim, Su Na
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.287-293
    • /
    • 2022
  • Gray hair is a representative sign of aging. Intrinsic aging, stress, and the external environment cause hair graying. Stress is known to be a major factor in the early onset of hair graying. We previously found that Pueraia lobata root extract (PLRE) can prevent hair graying by promoting melanin formation. However, it remains unknown whether PLRE can prevent hair graying induced by conditions of stress. In this study, we confirmed the effect of PLRE on stress-induced hair graying. A reporter cell line was newly constructed to confirm the expression of microphthalamia-associated transcription factor (MITF), the main transcription factor for melanin production. MITF expression and melanin pigmentation were reduced in human hair follicle tissue treated with the stress hormone cortisol or H2O2 to induce oxidative stress. PLRE treatment restored MITF expression and increased the amount of melanin pigment in the hair follicle. The expression of Tyrosinase related proteins-2 (TRP-2), a melanin synthesis enzyme in the hair follicle, also increased. In conclusion, PLRE can effectively prevent the inhibition of melanin synthesis by stress hormones and oxidative stress.

The Effects of Unpredictable Stress on the LHR Expression and Reproductive Functions in Mouse Models (실험적 마우스 모델에서 예측 불가능한 스트레스가 황체형성호르몬 수용체의 발현과 생식기능에 미치는 영향에 관한 연구)

  • Choi, Sung-Young;Park, Jin-Heum;Zhu, Yuxia;Kim, Young-Jong;Park, Jae-Ok;Moon, Changjong;Shin, Taekyun;Ahn, Meejung;Kim, Suk-Soo;Park, Young-Sik;Chae, Hyung-Bok;Kim, Tae-Kyun;Kim, Seung-Joon
    • Journal of Veterinary Clinics
    • /
    • v.31 no.5
    • /
    • pp.394-402
    • /
    • 2014
  • The objective of this study was to investigate the effect of chronic unpredictable stress on the reproductive function and ovarian luteinizing hormone receptor (LHR) expression. 9-week-old C57BL/6 female mice were randomly divided into two groups: control group and stressed group. Mice have been stressed twice a day for 35 days with 12 different stressors which were randomly selected. The results demonstrate that there is significant increase in the anxiety-related behaviors (P < 0.05), decrease body weight gain rate (P < 0.01) and decrease in the average of litter size in stressed mice compared with control group (P < 0.01). Furthermore, the rate of primary, secondary and early antral follicles in stressed mice significantly decreased (P < 0.05), whereas that of atretic follicles significantly increased compared with control mice (P < 0.01). The immunohistochemical analysis revealed that reduced LHR expression in granulosa cells of follicle and luteal cells of corpus luteum in response to chronic unpredictable stress. The western blot analysis revealed significantly decrease in LHR expression in the stressed mice ovaries compared with the control (P < 0.05). These results suggest that ovarian LHR expression affected by chronic unpredictable stress and the modulated ovarian LHR is responsible for ovarian follicular maldevelopment and reproductive dysfunction.