• 제목/요약/키워드: Stress-Strength Analysis

검색결과 2,247건 처리시간 0.029초

유한요소해석을 이용한 현장 덧씌우기 콘크리트의 부착강도 평가 방법 제안 (Proposal of Bond Strength Evaluation Method for Overlay Concrete at Field)

  • 이봉학;홍창우;이주형;김성환
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.295-300
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction defends upon band strength between old and the new concrete. Current adhesion strength measurement method is inaccurate method that ignore effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5 cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

교면 덧씌우기 콘크리트의 부착강도 평가 방법 제안 (Proposal of Bond Strength Evaluation Method for Bridge Deck Overlay)

  • 장흥균;홍창우;정원경;이봉학;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.349-354
    • /
    • 2002
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex modification. But, no test method has been adopted as a standard to measure the bond strength between the concrete used to repair and the substrate being repaired. The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesion strength measurement method ignores the effect of stress concentration by shape of specimens. Therefore, this research calculates stress concentration coefficient using finite element analysis and direction tensile strength test (pull-off test). The result shows that the required core depth is 2.5cm. Elastic modulus and overlay thickness do not influence in stress concentration.

  • PDF

SUH35/SUH3 마찰용접 접합계면에 대한 잔류응력 특이성의 해석 (Analysis of Residual Stress Singularities on Interfaces of Friction Welded SUH35/SUH3)

  • 정남용;박철희
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.104-111
    • /
    • 2005
  • With increasing use of SUH35/SUH3 dissimilar materials for automotive engine valves, it is required that stress singularities under residual stress on an interface for friction welded dissimilar materials analyzed to establish strength evaluation. The stress singularity $index{\lambda}$ and stress singularities $factor{\Gamma}$ were calculated from using the results of stress analysis to consider residual stress and loads. The stress singularities on variations for shapes and thickness of welded flashes were analyzed and discussed. This paper suggested that the strength evaluation by using the stress singularity factors as fracture parameters, considering the stress singularity on an interface edge of friction welded dissimilar materials will be useful.

Moment redistribution of continuous composite I-girder with high strength steel

  • Joo, Hyun Sung;Moon, Jiho;Sung, Ik-Hyun;Lee, Hak-Eun
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.873-887
    • /
    • 2015
  • The continuous composite I-girder should have a sufficient rotation capacity (or ductility) to redistribute the negative bending moment into an adjacent positive bending moment region. However, it is generally known that the ductility of the high strength steel is smaller than that of conventional steel, and application of high strength steel can cause ductility problems in a negative moment region of the I-girder. In this study, moment redistribution of the continuous composite I-girder with high strength steel was studied, where high strength steel with yield stress of 690 MPa was considered (the ultimate stress of the steel was 800 MPa). The available and required rotation capacity of the continuous composite I-girder with high strength steel was firstly derived based on the stress-strain curve of high strength steel and plastic analysis, respectively. A large scale test and a series of non-linear finite element analysis for the continuous composite I-girder with high strength steel were then conducted to examine the effectiveness of proposed models and to investigate the effect of high strength steel on the inelastic behavior of the negative bending moment region of the continuous composite I-girder with high strength steel. Finally, it can be found that the proposed equations provided good estimation of the requited and available rotation capacity of the continuous composite I-girder with high strength steel.

상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II) (Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II))

  • 박치모;이승훈
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.36-40
    • /
    • 2002
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore structure, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfection, i.e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares. ABAQUS for the analysis of ring stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength ring stiffened cylinders.

상용소프트웨어를 이용한 원환보강 원통의 최종강도 해석(II) (Ultimate Strength Analysis of Ring-stiffened Cylinders Using Commercial Softwares(II))

  • 박치모;이승훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.114-118
    • /
    • 2001
  • Despite the frequent use of ring-stiffened cylinders as a submarine pressure hull or members of various types of offshore sutructures, their ultimate strength analysis methods have not been well established because of their complex structural characteristics. This paper has established the method how to use commercial softwares based on the finite element method to implement the ultimate strength analysis of ring-stiffened cylinders covering both types of initial imperfections, I. e. initial deformation and initial stress by combining two separately offered functions of common commercial finite element softwares, linear elastic buckling analysis and nonlinear stress analysis. Developed method was applied to one of the world-widely used commercial softwares, ABAQUS for the analysis of ring-stiffened cylinders. This paper ends with some useful information about the imperfection sensitivity of ultimate strength of ring-stiffened cylinders.

  • PDF

조적요소의 인장응력-변형률 관계 평가 (Evaluation of Tensile Stress-strain Relationship of Masonry Elements)

  • 양근혁;이용제;황용하
    • 대한건축학회논문집:구조계
    • /
    • 제35권3호
    • /
    • pp.27-33
    • /
    • 2019
  • The purpose of this study is to provide and evaluate the tensile properties of masonry element such as tensile strength, strain, modulus of elasticity and stress-strain relationship through the direct tension test with varies of mortar strength. From the experiment, the tension fracture was observed along the interfaces between the brick and the mortar. Tension properties of masonry element was significantly affected by compressive strength of mortar, $f_m$, indicating that higher tensile strength and modulus of elasticity of masonry element were obtained with increase of $f_m$. The strain of a masonry element was inversely proportional to $f_m$ due to the lower ductility of a higher mortar strength. A tensile stress-strain relationship of masonry element was generalized based on the numerical analysis and the regression analysis using test data. The proposed model shows fairly good agreement with the test measurements.

마찰용접에 의한 이종재 접합계면에 대한 응력특이성의 해석 (Analysis of Stress Singularities on Interfaces of Friction Welded Dissimilar Materials)

  • 정남용;박철희
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.142-148
    • /
    • 2005
  • In this paper, the stress singularity on interface of friction welded dissimilar materials was investigated by using 2-dimensional elastic boundary element method. It is required that stress distributions and stress singularities on an interface for friction welded dissimilar materials analize to establish strength evaluation. The stress singularity index ($\lambda$) and stress singularity factor ($\Gamma$) were calculated from the results of stress analysis. The stress singularities on variations for shapes and thickness of friction welded flashes were analized and discussed. This paper suggested that the strength evalution by using the stress singularity factors as fracture parameters, considering the stress singularity on an interface edge of friction welded dissimilar materials were very useful.

고주파 열처리를 고려한 액슬 축 비틀림 거동 연구 (A study on torsional strength of induction hardened axle shaft)

  • 강대현;이범재;윤창배;김강욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.459-463
    • /
    • 2008
  • Induction hardening has been used to improve torsional strength and characteristics of wear for axle shaft which is a part of automobile to transmit driving torque from differential to wheel. After rapidly heating and cooling process of induction hardening, the shaft has residual stress and material properties change which affect allowable transmit torque. The objective of this study is to predict the distribution of residual stress and estimate the torsional strength of induction hardened axle shafts which has been residual stress using finite element analysis considered thermo mechanical behavior of material and experiments. Results indicate that the torsional strength of axle shaft depends on the surface hardening depth and distribution of residual stress.

  • PDF

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • 제5권5호
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.