• Title/Summary/Keyword: Stress-Strength Analysis

Search Result 2,237, Processing Time 0.028 seconds

A Study on Fatigue Design of CT-Type Spot Welded Lap Joint (CT형 점용접 이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.91-95
    • /
    • 2010
  • Stress distribution and deformation on the CT-type(Cross Tension type) spot welded lap joint subjected to out of plane tensile load were investigated by finite element method. Using the maximum principal stresses at the nugget edge obtained by FEM analysis, evaluated the fatigue strength of the CT-type spot welded lap joints having various dimensions and materials. and also, the influence of the geometrical parameters of CT-type spot welded lap joints on stress distribution and fatigue strength must be evaluated. thus, in this paper, ${\Delta}P-N_f$ curve were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curve were systematically rearranged in the $\Delta\sigma-N_f$ relation with the hot spot stresses at the CT-type spot welded lab joints. It was found that the proposed $\Delta\sigma-N_f$ relation could provide a more reasonable fatigue design criterion for the CT-type spot welded lap joints.

FATIGUE LIFE ESTIMATION OF IMPLANT USING A FINITE ELEMENT METHOD (유한요소법을 이용한 치아 임플랜트 피로수명 예측)

  • Han In-Sook;Son Jung-Hun;Yang Young-Soo;Lee Seung-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Purpose : The purpose of this study is to use finite element analysis to predict the fatigue life of an implant system subjected to fatigue load by mastication (chewing force). The reliability and the stability of implant system can be defined in terms of the fatigue strength. Not only an implant is expensive but also it is almost impossible to correct after it is inserted. From a bio-engineering standpoint, the fatigue strength of the dental implant system must be evaluated by simulation (FEA). Material and Methods Finite element analysis and fatigue test are performed to estimate the fatigue strength of the implant system. Mesh of implant is generated with the actual shape and size. In this paper, the fatigue strength of implant system is estimated. U-fit (T. Strong, Korea, internal type). The stress field in implant is calculated by elastic-plastic finite element analysis. The equivalent fatigue stress, considering the contact and preload stretching of a screw by torque for tightening an abutment, is obtained by means of Sine's method. To evaluate the reliability of the calculated fatigue strength, fatigue test is performed. Results: A comparison of the calculated fatigue strength with experimental data showed the validity and accuracy of the proposed method. The initiation points of the fatigue failure in the implant system exist in the region of high equivalent fatigue stress values. Conclusion: The above proposed method for fatigue life estimation tan be applied to other configurations of the differently designed and improved implant. In order to prove reliability of prototype implant, fatigue test should be executed. The proposed method is economical for the prediction of fatigue life because fatigue testing, which is time consuming and precision-dependent, is not required.

Singular Stress Field Analysis and Strength Evaluation in Ceramic/.Metal Joints (세라믹/금속접합재의 열사이클피로에 따른 접합계면의 잔류응력분포 특성)

  • 박영철;김현수;허선철;강재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.709-713
    • /
    • 1996
  • The ceramic has such high qualities as light weight, abrasion resistance, heat resistance compared with metal, but since it is breakable, it can't be used as structural material and it is desirable to joining metal which is full of toughness, but, according as the ceramic/metal joint is executed at high temperature, the joint residual stress develops near the joint sides in the process of cooling the high temperature down to the suitable temperature due to difference of the thermal expansion coefficient between ceramic and metal, and the joint residualstress lowers the fracture strength. In this study, to ensure security and improvement of bending strength, 1 studies on see distribution shape of residual stress according to high thermal cycle, and the influnence of theraml cycle and distribution shape of residual stess on joint-strength.

  • PDF

Structural strength evaluation of Freight Car Carbody for transportation of cold-rolled coils (냉연코일 수송화차 차체의 구조 강도 평가)

  • Kwon, Sung-Tae;Kim, Jeong-Guk;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.775-779
    • /
    • 2007
  • The structural strength assessment of a carbody was performed using F.E. analysis and static test to verify the structural safety of newly manufactured carbody of a freight car. The freight car for the transportation of cold-rolled coils in steel making company was designed with SS400 steel for underframe and SM490A steel for bracket. Prior to the evaluation of structural strength, commercial finite element method(FEM) software was used for the stress and structural analyses on stress distribution in a carbody of freight car. The strain gages were attached on the carbody based on the FEM results. The actual vertical loading test and horizontal compression loading test were conducted, and the stress and displacement were obtained. Finally, the structural strength of carbody was evaluated by using a engineering techniques.

  • PDF

Undrained solution for cavity expansion in strength degradation and tresca soils

  • Li, Chao;Zou, Jin-feng;Sheng, Yu-ming
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • An elastic-plastic solution for cavity expansion problem considering strength degradation, undrained condition and initial anisotropic in-situ stress is established based on the Tresca yield criterion and cavity expansion theory. Assumptions of large-strain for plastic region and small-strain for elastic region are adopted, respectively. The initial in-situ stress state of natural soil mass may be anisotropic caused by consolidation history, and the strength degradation of soil mass is caused by structural damage of soil mass in the process of loading analysis (cavity expansion process). Finally, the published solutions are conducted to verify the suitability of this elastic-plastic solution, and the parametric studies are investigated in order to the significance of this study for in-situ soil test.

Dynamic Material Property of Mn-B Alloy High-Strength Steel (Mn-B 합금계 고강도 강의 동적 물성)

  • Choi, Chang;Hong, Sungin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.124-131
    • /
    • 1996
  • The dynamic material property of Mn-B ally high-strength steel is investigated through the rod impact test which is one of simple test methods for the analysis of the material behavior under high-strain-rate. Rod impact test is performed to produce the deformed shape of rod and analyzed by the one-dimensional theory based on conservation law and the two-dimensional hydrocode AUTODYN-2D. The dynamic yield stress is determined and compared with the static yield stress to investigate the strain-rate sensitivity of Mn-B alloy high-strength steel.

  • PDF

Study on the Design of Upper Deck Hatch Corner Insert Plates of Large Container Carriers (대형 컨테이너선 상갑판 해치코너부 보강판의 설계에 관한 연구)

  • Park, Sung-Gu;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.331-339
    • /
    • 2006
  • The objective of this paper is to calculate the fatigue strength for upper deck hatch corner insert plate of large container carriers without wave load analysis and global finite element analysis at the initial design stage. Wave load analysis and global F.E. analysis for three container carriers have been performed by GL(Germanischer Lloyd) procedure to propose the equation for hatch corner stress range which is the important factor in fatigue strength calculation. Considering the restraining effect of bulkhead, three types of equation, that is, single tight bulkhead, double tight bulkhead and support bulkhead have been proposed. Using the proposed equations, a simplified fatigue analysis based on GL rules has been performed for two container carriers of which fatigue strength analysis was carried out by GL. From the comparison between fatigue strength result of using the proposed equations and that of GL, it has been found that proposed stress range equations are useful for scantling of upper deck hatch corner insert plates for over 8,000 TEU class container carriers.

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

Influence of initial imperfections on ultimate strength of spherical shells

  • Yu, Chang-Li;Chen, Zhan-Tao;Chen, Chao;Chen, Yan-ting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.473-483
    • /
    • 2017
  • Comprehensive consideration regarding influence mechanisms of initial imperfections on ultimate strength of spherical shells is taken to satisfy requirement of deep-sea structural design. The feasibility of innovative numerical procedure that combines welding simulation and non-linear buckling analysis is verified by a good agreement to experimental and theoretical results. Spherical shells with a series of wall thicknesses to radius ratios are studied. Residual stress and deformations from welding process are investigated separately. Variant influence mechanisms are discovered. Residual stress is demonstrated to be influential to stress field and buckling behavior but not to the ultimate strength. Deformations are proved to have a significant impact on ultimate strength. When central angles are less than critical value, concave magnitudes reduce ultimate strengths linearly. However, deformations with central angles above critical value are of much greater harm. Less imperfection susceptibility is found in spherical shells with larger wall thicknesses to radius ratios.