• Title/Summary/Keyword: Stress shielding

Search Result 79, Processing Time 0.02 seconds

Preliminary Study for Development of Low Dose Radiation Shielding Material Using Liquid Silicon and Metalic Compound (액상 실리콘과 금속화합물을 융합한 저선량 방사선 차폐 소재 개발을 위한 사전연구)

  • Jang, Seo Goo;Han, Su Chul;Kang, Sung Jin;Lim, sung wook;Lee, Sung Soo
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.461-468
    • /
    • 2017
  • This study measured and compared the protective clothing using Pb used for shielding in a diagnostic X-ray energy range, and the shielding rates of X-ray fusion shielding materials using Si and $TiO_2$. For the experiment, a pad type shielding with a thickness of 1 mm was prepared by mixing $Si-TiO_2$, and the X-ray shielding rate was compared with 0.5 mmPb plate of The shielding rate of shielding of 0.5 mmPb plate 95.92%, 85.26 % based on the case of no shielding under each 60 kVp, 100 kVp tube voltage condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 11 mm or more, and the shielding rate of 100% or more was confirmed at a thickness of 13 mm in 60 kVp condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 17 mm or more, and a shielding rate of 0.5 mmPb plate was observed at a thickness of 23 mm in 100 kVp condition. Through the results of this study, We could confirm the possibility of manufacturing radiation protective materials that does not contain lead hazard using various metalic compound and liquid Si. This study shows that possibility of liquid Si and other metalic compound can harmonize easily. Beside, It is flexible and strong to physical stress than Pb obtained radiation protective closthes. But additional studies are needed to increase the shielding rate and reduce the weight.

Actual Wearing State of Aged Pregnant Women for the Development of Electromagnetic Waves Shielding Maternity Wear (전자파 차폐 임부복 개발을 위한 고령 산모의 임부복 착용 실태조사)

  • Kim, Young-im;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.21 no.5
    • /
    • pp.618-626
    • /
    • 2019
  • This study conducted basic studies to develop electromagnetic wave shielding maternity wear. We investigated electromagnetic wave shielding fabrics and products as well as surveyed actual wearing states for pregnant women aged 35 to 44 and women who gave birth within the past one year. Available electromagnetic wave blocking products for pregnant women were blankets, aprons, maternity belts, and underwear. These only cover the abdomen and it was hard to find out electromagnetic waves shielding maternity wear, which can enhance functionality and complement the body shapes of pregnant women. The aged mother responded pregnancy delay was mostly attributable to late marriage, career, financial difficulty and health problems. Major health threats to babies were high stress levels during pregnancy, followed by electromagnetic waves from electronic devices. They prioritized physical activity, design, functionality and safety when wearing maternity wear. When purchasing maternity wear, they emphasized design, price, materials and size. The most preferred clothing was one-piece dress; consequently, only 11.1% of them were satisfied with the quality of maternity wear with complaints mostly about design and price. A total of 63% of respondents tried to protect themselves from electromagnetic waves. Most aged mothers showed a positive intention on purchasing electromagnetic waves blocking maternity wear for babies with concerns dealing with safety of materials, prices, ease of laundry, and body complementing design.

Short Humeral Stems in Shoulder Arthroplasty

  • Oh, Hwang Kyun;Lim, Tae Kang
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • Since the introduction of shoulder arthroplasty by Neer in 1974, the design of not only the glenoid component but also the humeral component used in shoulder arthroplasty has continually evolved. Changes to the design of the humeral component include a gradually disappearing proximal fin; diversified surface finishes (such as smooth, grit-blasted, and porous coating); a more contoured stem from the originally straight and cylindrical shape; and the use of press-fit uncemented fixation as opposed to cemented fixation. Despite the evolution of the humeral component for shoulder arthroplasty, however, stem-related complications are not uncommon. Examples of stem-related complications include intraoperative humeral fractures, stem loosening, periprosthetic fractures, and stress shielding. These become much more common in revision arthroplasty, where patients are associated with further complications such as surgical difficulty in extracting the humeral component, proximal metaphyseal bone loss due to stress shielding, intraoperative humeral shaft fractures, and incomplete cement removal. Physicians have made many attempts to reduce these complications by shortening the stem of the humeral component. In this review, we will discuss some of the limitations of long-stem humeral components, the feasibility of replacing them with short-stem humeral components, and the clinical outcomes associated with short-stemmed humeral components in shoulder arthroplasty.

Thermomechanical Properties of Thermal-Stress Relief Type of Functionally Gradient Materials

  • Watanabe, Ryuzo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.2-2
    • /
    • 1993
  • The present status of the thennomechanica1 evaluation of functionally gradient materials(FGMs) for space plane application was reviewed, in which research activities and the cooperation of the national project team organized to study FGM science were demonstrated. The project team was divided into three working groups; de singing, processing and evaluation, each of which had their own tasks in the project cooperation. The testings details of the various thennomechanical tests for the FGM samples fabricated by the processing groups were described, along with their corresponding heating conditions of the real environments in the space plane application. For small-sized samples, laser beam heating test and burner heating test were well applied to study the heat shielding and heat resisting properties. Arc-heated wind tunnel test and high temperature!high velocity gas flow test were used for large-sized panel assemblies having cooling structures. The criteria for the evaluation of the heat shielding and heat resisting properties of the FGMs, as well as a crack activation mechanism in their differential temperature heating, were proposed on the basis of the observation in the burner heating test.

  • PDF

Zr-7Cu Alloy Design According to Sn Content for Bio-Metallic Materials (금속 생체재료를 위한 Sn 함량에 따른 Zr-7Cu 합금설계)

  • Kim, Min-Suk;Kim, Chung-Seok
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.690-696
    • /
    • 2021
  • The purpose of this study is to develop a zirconium-based alloy with low modulus and magnetic susceptibility to prevent the stress-shielding effect and the generation of artifacts. Zr-7Cu-xSn (x = 1, 5, 10, 15 mass%) alloys are prepared by an arc melting process. Microstructure characterization is performed by microscopy and X-ray diffraction. Mechanical properties are evaluated using micro Vickers hardness and compression test. The magnetic susceptibility is evaluated using a SQUID-VSM. The average magnetic susceptibility value of the Zr-7Cu-xSn alloy is 1.176 × 10-8 cm3g-1. Corrosion tests of zirconium-based alloys are conducted through polarization test. The average Icorr value of the Zr-7Cu-xSn alloy is 0.1912 ㎂/cm2. The elastic modulus value of 14 ~ 18 GPa of the zirconium-based alloy is very similar to the elastic modulus value of 15 ~ 30 GPa of the human bone. Consequently, the Sn added zirconium alloy, Zr-7Cu-xSn, is very interesting and attractive as a biomaterial that reduces the stress-shielding effect caused by differences of elastic modulus between human bone and metallic implants. In addition, this material has the potential to be used in metallic dental implants to effectively eliminate artifacts in MRI images due to low magnetic susceptibility.

Design of Zr-7Si-xSn Alloys for Biomedical Implant Materials (생체의료용 임플란트 소재를 위한 Zr-7Si-xSn 합금설계)

  • Kim, Minsuk;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.8-19
    • /
    • 2022
  • The metallic implant materials are widely used in biomedical industries due to their specific mechanical strenth, corrosion registance, and superior biocompatability. These metallic materials, however, suffer from the stress-shielding effect and the generation of artifacts in the magnetic resonance imaging exam. In the present study, we develope a Zr-based alloys for the biomedical implant materials with low elastic modulus and low magnetic susceptibility. The Zr-7Si-xSn alloys were fabricated by an arc melting process. The elastic modulus was 24~31 GPa of the zirconium-based alloy. The average magnetic susceptibility value of the Zr-7Si-xSn alloy was 1.25 × 10-8cm3g-1. The average Icorr value of the Zr-7Si-xSn alloy was 0.2 ㎂/cm2. The Sn added zirconium alloy, Zr-7Si-xSn, is very interested and attractive as a biomaterial that reduces the stress-shielding effect caused by the difference of elastic modulus between human bone and metallic implant.

INTERACTION BETWEEN THREE MOVING GRIFFITH CRACKS AT THE INTERFACE OF TWO DISSIMILAR ELASTIC MEDIA

  • Das, S.;Patra, B.;Debnath, L.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The paper deals with the interaction between three Griffith cracks propagating under antiplane shear stress at the interface of two dissimilar infinite elastic half-spaces. The Fourier transform technique is used to reduce the elastodynamic problem to the solution of a set of integral equations which has been solved by using the finite Hilbert transform technique and Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips are obtained. Numerical values of the interaction efect have been computed for and results show that interaction effects are either shielding or amplification depending on the location of each crack with respect to other and crack tip spacing. AMS Mathematics Subject Classification : 73M25.

Numerical Stress Analysis of bone plate System using 3-dimensional finite element method (3차원 유한 요소법을 이용한 골절판의 응력 해석)

  • Kim, Hyun-Su;Kwon, Young-Soo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.74-78
    • /
    • 1991
  • Conventional compression bone fracture plates sometimes cause osteoporosis under the plate due to their high rigidity which in turn transfer physiological load mostly through the plates and screws. In order to prevent the osteopenia we have designed a system which have a viscoelastic washer between plate and screw head. The washer is made of a biocompatible ploymer (untra high molecular weight polyethylene, UHMWPE). Three-dimensional finite element meshes of the human femur with the conventional and new concept bone plate ere generated and the comparative stress analyses are performed with static half-stance loading condition. The results of analyses showed that could reduce the stress shielding effect compared with the conventional plate.

  • PDF

Low streee Abrasive Wer mechanism of the Iron/Chromium Hardfacing Alloy (저응력하의 철/크롬 올버레이합금의 긁힘마모기구)

  • 백응률
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.73-83
    • /
    • 1998
  • This study investigated the relationships between the microstructure and the wear resistance of hardfaced iron/chromium alloys to examine the low stress abrasive wear mechanism. The effects of volume fraction of reinforcing phases(chromium carbide and eutectic phase) were studied. The alloys were deposited once or twice on a mild steel plate using a self-shielding flux cored arc welding process. The low stress abrasion resistance of he alloys against dry sands was measured by the Dry Sand/Ruber Wheel Abrasion Tester (RWAT). The wear resistance of hypoeutectic alloys, below 0.36 volume fraction of chromium-carbide phase (VFC), behaved as Equal Pressure Mode (EPM) for the inverse rule of mixture whereas the wear resistance of hypereutectic alloys, above 0.36 VFC, represented Equal Wear Mode (EWM) for the linear rule of mixture.

  • PDF

Finite Element Analysis of Instrumented Posterior Lumbar Interbody Fusion Cages for Reducing Stress Shielding Effects: Comparison of the CFRP cage and Titanium cage (요추유합술에서 응력방패 현상 감소를 위한 케이지의 유한요소해석 : CFRP 케이지와 티타늄 케이지 비교 연구)

  • Kang, Kyung-Tak;Chun, Heoung-Jae;Kim, Ho-Joong;Yeom, Jin-S.;Park, Kyoung-Mi;Hwang, In-Han;Lee, Kwang-Ill
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.98-104
    • /
    • 2012
  • In recent years, degenerative spinal instability has been effectively treated with a cage. However, little attention is focused on the stiffness of the cage. Recent advances in the medical implant industry have resulted in the use of medical carbon fiber reinforced polymer (CFRP) cages. The biomechanical advantages of using different cage material in terms of stability and stresses in bone graft are not fully understood. A previously validated three-dimensional, nonlinear finite element model of an intact L2-L5 segment was modified to simulate posterior interbody fusion cages made of CFRP and titanium at the L4-L5 disc with pedicle screw, to investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region. From the results, it could be found that the use of a CFRP cage would not only reduce stress shielding, but it might also have led to increased bony fusion.