DOI QR코드

DOI QR Code

Preliminary Study for Development of Low Dose Radiation Shielding Material Using Liquid Silicon and Metalic Compound

액상 실리콘과 금속화합물을 융합한 저선량 방사선 차폐 소재 개발을 위한 사전연구

  • Jang, Seo Goo (Department of Medical Science, Graduate School of Soonchunhyang University) ;
  • Han, Su Chul (Divisoin of Medical Radiation Equipment, Korea Institute of Radiological and Medical Sciences) ;
  • Kang, Sung Jin (SoonChunHyang University Hospital) ;
  • Lim, sung wook (Graduate school of SeJong University) ;
  • Lee, Sung Soo (Department of Medical Science, Graduate School of Soonchunhyang University)
  • 장서구 (순천향대학교 대학원 의과학과) ;
  • 한수철 (한국원자력의학원) ;
  • 강성진 (순천향대학교 부천병원 영상의학과) ;
  • 임성욱 (세종대학교 대학원) ;
  • 이성수 (순천향대학교 대학원 의과학과)
  • Received : 2017.08.31
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

This study measured and compared the protective clothing using Pb used for shielding in a diagnostic X-ray energy range, and the shielding rates of X-ray fusion shielding materials using Si and $TiO_2$. For the experiment, a pad type shielding with a thickness of 1 mm was prepared by mixing $Si-TiO_2$, and the X-ray shielding rate was compared with 0.5 mmPb plate of The shielding rate of shielding of 0.5 mmPb plate 95.92%, 85.26 % based on the case of no shielding under each 60 kVp, 100 kVp tube voltage condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 11 mm or more, and the shielding rate of 100% or more was confirmed at a thickness of 13 mm in 60 kVp condition. When the shielding of $Si-TiO_2$ pad was applied, the shielding rate equal to or greater than 0.5 mmPb plate was obtained at a thickness of 17 mm or more, and a shielding rate of 0.5 mmPb plate was observed at a thickness of 23 mm in 100 kVp condition. Through the results of this study, We could confirm the possibility of manufacturing radiation protective materials that does not contain lead hazard using various metalic compound and liquid Si. This study shows that possibility of liquid Si and other metalic compound can harmonize easily. Beside, It is flexible and strong to physical stress than Pb obtained radiation protective closthes. But additional studies are needed to increase the shielding rate and reduce the weight.

본 연구는 진단용 X선 에너지 영역에서 고순도의 납 0.5mm 와 실리콘(Si)과 이산화티탄($TiO_2$)을 이용한 X선 융합차폐체의 선량을 측정하고 차폐율을 비교 측정하였다. 실험을 위하여 실리콘(Si)과 이산화티탄($TiO_2$)을 혼합하여 1 mm 두께의 패드형 차폐체를 제작하고, 차폐체의 두께를 1mm 씩 증가시키며 X선을 조사하여 0 mR이 될 때까지 선량을 측정하였다. KS A 4025의 권고에 따라 X선 조사조건은 각각 60 kVp 20 mAs, 100 kVp 20 mAs로 하였으며, 두 개의 관전압 조건에서 차폐체가 없을 경우의 조사선량을 기준으로 차폐체가 있을 경우의 선량과 비교하여 차폐율을 구하였다. 두께 0.5 mm 납판 차폐체의 차폐율은 60 kVp에서 95.92%, 100 kVp에서 85.26%로 측정되었고, 실리콘(Si)과 이산화티탄($TiO_2$)패드 차폐체를 적용하였을 경우 60 kVp, 20 mAs 조건에서 두께가 11 mm 이상일 때 10회 조사 평균선량은 1.77 mR, 차폐율은 납판 0.5 mm 차폐체와 등가의 차폐율을 나타내었으며, 13 mm에서 측정선량이 0 mR이 되었다. 100 kVp, 20 mAs 조건에서는 17 mm 두께에서 납 0.5 mm 차폐체와 등가 이상의 차폐율이 관찰 되었고 23 mm 두께에서 100% 의 차폐율을 관찰할 수 있었다. 본 연구 결과를 통해 실리콘-이산화티탄 화합물은 실리콘의 물성이 그대로 존재하면서 금속화합물과 융합할 수 있다는 결과를 얻었으며, 이후 방사선 흡수가 더 뛰어난 금속화합물등과 혼합할 경우 납의 위해성을 포함하지 않으며, 재료와 가공성에서 경제적이며, 실리콘의 강점을 살려 탄성과 유연성이 뛰어난 저선량용 방사선 차폐재의 제작 가능성을 확인해 볼 수 있었다.

Keywords

References

  1. K. T. Kim, Y. J. Heo, J. W. Shin, et al, "A Study on the Improvement of Evaluation Methods and Standards for Simulation evaluation of Computed Tomography", The Korean Society of Radiology, Vol. 7 No. 5, pp. 339-345, 2013. https://doi.org/10.7742/jksr.2013.7.5.339
  2. Y. A. Kwon, A Study of MSDs and their Policy Reform for Workers in Healthcare and Medical Fields, Master's thesis Seoul Tech., 2009.
  3. Korea Industrial Safety Asssciation, Safety measure of lead poisoning, KISA-health-05, 2015.
  4. G. Y. Park, Modification of lipoproteins by blood lead (Pb) to result skin toxicity and pro-atherogenic effect, Master's thesis, Young-Nam Univ., 2014.
  5. Korean intellectual property office patent gazette (A), Radiation shielding fabric, Number 10-2009-0011082, 2009.
  6. Korean intellectual property office patent gazette (A), Radiation shielding fabric, Number 10-08600332, 2008.
  7. Korean intellectual property office patent gazette (A), Excellent X-ray shielding textile products and its manufacturing method, Number 2001-0056190, 2001.
  8. Korean intellectual property office patent gazette (A), Barium sulfate fiber and manufacturing method of radiation shielding, Number 2000-0007084, 2000.
  9. Y. H. Seong, "Evaluation of Surface Radiation Dose Reduction and Radiograph Artifact Images in Computed Tomography on the Radiation Convergence Shield by Using Sea-Shells." Journal of the Korea Convergence Society Vol. 8 No.2, pp. 113-120, 2017. https://doi.org/10.15207/JKCS.2017.8.2.113
  10. Korea Standard, Method of Lead Equivalent Experiment for X-ray Shielding Articles, No. 2015-0654, KS A 4025: 1990.
  11. Korea Standard, X-ray Protection Articles for Patients, No. 2014-0987, KS A 4917: 2014.
  12. S. C KIM, Development of Radiation Shielding Sheet with Environmentally-Friendly Materials; II: Evaluation of Barum, Tourmaline, Silicon Polymers in the Radiation Shielding Sheet, Korean Society of Radiological Science, Vol. 34, No. 2, pp. 141-147, 2011.
  13. C. G. Kim, "University Students' Awareness of Radiation." Journal of the Korea Convergence Society Vol. 3, No. 1,, pp. 27-34, 2012.
  14. H. R. Jung, K. J. Kim, E. H. Mo, "A Study on the Radiation Exposure Dose of Brain Perfusion CT Examination a Phantom." Journal of the Korea Convergence Society Vol. 6, No. 5, pp. 287-294, 2015. https://doi.org/10.15207/JKCS.2015.6.5.287
  15. J. E. Ngaile, "Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations." Radiation Protection Dosemetry Vol. 130, pp. 490-498, 2008. https://doi.org/10.1093/rpd/ncn095
  16. J. P. McCaffrey, H. Shen, B. Downton and E. Maninegra-Hing. "Radiation attenuation by lead and nonlead materials used in radiation shielding garments." Med.Phys Vol. 34, No. 2, pp. 530-537, 2007. https://doi.org/10.1118/1.2426404
  17. K. Y. Wenyun Luo, Xiaoqing Dong, Chuanshan Wang, Guohua Wu, Mawei Jiang, and Yuanzi Zha. "A New Lead-free Radiation Shielding Material for Radiotherapy." Radiation Protection Dosimetry Vol. 133, No. 4, pp. 256-260, 2009. https://doi.org/10.1093/rpd/ncp053
  18. J. Hobson, A. Copper, "Radiation Protection and Shielding Design-Strengthening the Link." Radiation Protection Dosimetry Vol. 115 No. 1-4, pp. 251-253. 2005. https://doi.org/10.1093/rpd/nci172
  19. E. Calzada, F. Gruauer, B. Schillinger and H. Turck. "Reusable shielding material for neutron-and gamma-radiation." Nuclear Instruments and Methods in Physics Research Vol. 651 No. 1, pp. 77-80, 2011. https://doi.org/10.1016/j.nima.2010.12.239
  20. A. El-Sayed Abdo, M. A. M. Ali, and M. R. Ismail, "Natural fibre high-density polyethylene and lead oxide composites for radiation shielding." Radiation Physics and Chemistry Vol. 66, pp. 185-195, 2003. https://doi.org/10.1016/S0969-806X(02)00470-X
  21. T. Korkut, T. Korkut, A. Karabulut, and G. Budak, "A new radiation shielding material: Amethyst ore." Annals of Nuclear Energy Vol. 38, pp. 56-59. 2011. https://doi.org/10.1016/j.anucene.2010.08.017
  22. K. T. Kim, "Absorbed spectrum comparison of lead and tungsten in continuous x-ray energy using monte carlosimulation" J. Korean. soc. radiol, Vol. 27, pp. 483-487, 2012.
  23. IAEA(International Atomic Energy Agency), Training Material on Radiation Protection in Diagnostic and Interventional Radiology, Part 15.1: Optimization of protection in radiography: technical aspects.
  24. S. C KIM, Development of Radiation Shield with Environmentally-Friendly Materials ; I: Comparison and Evaluation of Fiber, Rubber, Silicon in the Radiation Shielding Sheet, Vol. 33 No. 2, pp. 121-126, 2010.
  25. B.H Han, Evaluation of Radiation Shielding Rate of Lead Aprons in Nuclear Medicine, Vol 40 No. 1, pp 41-47, 2017. https://doi.org/10.17946/JRST.2017.40.1.07