• Title/Summary/Keyword: Stress redistribution

Search Result 183, Processing Time 0.036 seconds

A Study on the Prediction of Fatigue Crack Growth Rate in Stainless Steel Weldments (스테인레스강 용접부의 피로균열 전파속도 예측에 관한 연구)

  • 이용복
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.68-78
    • /
    • 1998
  • Welding structure contains residual stress due to thermal-plastic strain during welding process, and its magnitude and distribution depend on welding conditions. Cracks initiate from various defects of the weldment, propagate and lead to final fracture, The crack initiation and propagation processes are affected by the magnitude and distribution. Therefore, the magnitude and distribution of weldment residual stress should be considered for safety design and service of welding structures. Also it is very important that more accurate assessment method of fatigue crack growth must take into account the redistributing the residual stress quantitively. because the residual stress in weldment has characteristics of its redistribution with loading magnitude, number of cycles and fatigue crack propagation. In this study fatigue crack behavior of STS-304 weldment was investigated during crack propagation into tensile residual stress region or compressive residual stress region. Crack growth rates were predicted and compared with experimental results.

  • PDF

Effect of Distance and Restraint Degree between Fillet and Butt Weldment on Residual Stress Redistribution at each Weldment (필릿과 맞대기 용접부 간의 간격 및 구속도에 따른 잔류응력 재분포 특성에 관한 연구)

  • Jin, Hyung-Kook;Lee, Dong-Ju;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.59-64
    • /
    • 2010
  • The purpose of this study is to identify the principal factor controlling transverse residual stress at the weldment for joining unit hull blocks. In order to do it, the comprehensive FE analyses were carried out to evaluate the effect of distance between fillet and butt weldments, stiffener span and in-plane restraint degree on the amount and distribution of transverse residual stress in way of the weldments between unit hull blocks. In accordance with FEA results, principal factor controlling the amount of transverse residual stress at the weldments was identified as in-plane restraint degree of butt weldment for unit blocks. The effect of other variables on the transverse residual stress was very small relatively.

Experimental Study of the Redistribution of Welding Distortion According to the Partial Removal of Welded Structure (용접구조물의 부분 제거에 따른 용접변형의 재분포에 관한 실험적 연구)

  • Kim, Yong Rae;Wang, Chao;Kim, Jae Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.707-712
    • /
    • 2015
  • During the welding process, welding distortion is caused by the non-uniformity of the temperature distribution in the weldment. Welding distortion is redistributed because the residual stress and rigidity change according to the removal of the welded structure. In shipbuilding in particular, this phenomenon may be observed during the cutting process of lugs that are attached to blocks for transfer. The redistribution of welding distortion also causes problems, such as damage to the cutting tool. The aim of this study is to experimentally analyze the redistribution of welding distortion because of the partial removal of the welded structure. In the experiments conducted in this study, fillet welding and cutting were performed, and longitudinal bending and angular distortion in the welded structures were then investigated and analyzed.

A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields (용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

Numerical analysis of simply supported one-way reinforced concrete slabs under fire condition

  • Ding, Fa-xing;Wang, Wenjun;Jiang, Binhui;Wang, Liping;Liu, Xuemei
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.355-367
    • /
    • 2021
  • This paper investigates the mechanical response of simply supported one-way reinforced concrete slabs under fire through numerical analysis. The numerical model is constructed using the software ABAQUS, and verified by experimental results. Generally, mechanical response of the slab can be divided into four stages, accompanied with drastic stress redistribution. In the first stage, the bottom of the slab is under tension and the top is under compression. In the second stage, stress at bottom of the slab becomes compression due to thermal expansion, with the tension zone at the mid-span section moving up along the thickness of the slab. In the third stage, compression stress at bottom of the slab starts to decrease with the deflection of the slab increasing significantly. In the fourth stage, the bottom of the slab is under tension again, eventually leading to cracking of the slab. Parametric studies were further performed to investigate the effects of load ratio, thickness of protective layer, width-span ratio and slab thickness on the performance of the slab. Results show that increasing the thickness of the slab or reducing the load ratio can significantly postpone the time that deflection of the slab reaches span/20 under fire. It is also worth noting that slabs with the span ratio of 1:1 reached a deflection of span/20 22 min less than those of 1:3. The thickness of protective layer has little effect on performance of the slab until it reaches a deflection of span/20, but its effect becomes obvious in the late stages of fire.

A Study on the strength improvement in weldment by the impact loading (충격하중에 의한 용접구조물의 강도 증가에 관한 연구)

  • 양영수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • It is well known that during the oxygen cutting process residual thermal stresses are produced in weldment. The local non-uniform heating and subsequent cooling which takes place during any welding process causes complex thermal strains and stresses to finally lead to residual stresses exceed to the yield stress. High tensile stresses combined with applied structural load in the region near the welded joint can given rise to distortion brittle fracture change of the fatigue strength and stress corrosion cracking. The appropriate treatment of the welded component which reduces the peak of he welding residual stresses is believed to lower risk of the fracture during the service of the structure. In this study the impact loading in oxygen cutting frame was applied to reduce the residual stress. After applying the impact loading redistribution of resid-ual stress was measured by cutting method and the effect of fatigue was tested.

  • PDF

Fatigue Crack Propagation Characteristics in HAZ of A106 Gr B Steel Pipe Weldments (A106 Gr B강 배관용접부의 잔류응력해석 및 피로균열성장특성)

  • 김철한;배동호;김복기;조선영;홍정균;이범노
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.237-240
    • /
    • 1999
  • In this study, residual stresses of the weldment were calculated by finite element analysis(FEA) and experiment. And, the crack closure behaviour and fatigue crack growth characteristics in field of residual stress of A106 Gr B steel pipe weldment were investigated under various stress ratio. Obtained results are as follows. I) $K_{op}$ was independent of $K_{max}$, and load ratio in fatigue crack growth. 2) In variation of load ratio, the scatter band of crack growth curve was reduced by half considering crack closure. and 3) Neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated' and Actual fatigue crack growth rate can be overestimated by $K_{res}$, in tensile residual stress field.

  • PDF

Dipyridamole Induced Transient Left Ventricular Dysfunction in the Tl-201 Gated Myocardial SPECT (Tl-201 게이트 심근 SPECT에서 디피리다몰 부하로 유도된 일시적 좌심실 기능이상)

  • Won, Kyoung-Sook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.153-161
    • /
    • 2003
  • Purpose: Recently the occurrence of dipyridamole stress-induced short term stunning was proven and it is reported that Bland Altman analysis by repeated acquisition Tl-201 gated myocardial SPECT (gSPECT) revealed the 95% limit of agreement for LVEF was 10.3 %. The purpose of this study was to investigate the clinical value of dipyridamole induced transient LV dysfunction on Tl-201 gSPECT. Materials and Methods: Total 93 patients were included and coronary angiography was peformed in all patients less than 2 month from gSPECT. The patients with myocardial infarction were excluded. All patients underwent both dipyridamole stress and 4-h redistribution Tl-201 gSPECT. Forty nine patients of total 93 showed normal coronary arteries (Group 1) and the remaining 44 patients had coronary artery disease (Group 2). We compared LV EF, EDV and ESV during post-stress and 4-h redistribution period calculated by gSPECT using quantitative gated SPECT software and the incidence of dipyridamole induced transient LV dysfunction between group 1 and 2. The criteria for transient LV dysfunction was defined more decrease ${\geq}11%$ of LVEF during post-stress than 4-h redistribution according to previous reported Bland Altman analysis. Results: During post-stress and 4-h redistribution average of 3.1% increment in LVEF, 6.6% increment in LVEDV and 0.7% decrement in LVESV were shown after stress in Group 1, whereas 4.1% decrement, 9.7% increment and 7.2% increment in Group 2 respectively. Dipyridamole induced transient LV dysfunction was only detected in group 2 (18.2%) and not in group 1. It was more frequently observed in triple vessel disease and left main disease (31.8%, N=22) than one and two vessel disease (4.5%, N=22). Conclusion: As with Tc-99m myocardial agent post-stress LV dysfunction was observed in dipyridamole Tl-201 gSPECT. It was only detected in CAD and more frequently occurred in multivessel disease. Thus this finding seems to provide additional information in the diagnosis of coronary artery disease and prediction of prognosis.

Comparison of $^{99m}Tc-MIBI$ Myocardial Uptake at Rest with Reinjection and 24-hour after Reinjection Images of $^{201}Tl$ ($^{201}Tl$$^{99m}Tc-MIBI$에 의한 생존심근의 진단 비교 -재분포영상에 고정관류결손을 보인 환자에서 $^{201}Tl$ 재주사법 및 $^{99m}Tc-MIBI$ 휴식기스캔에 의한 심근섭취 비교-)

  • Bom, Hee-Seung;Kim, Ji-Yeul;Park, Joo-Hyung;Ahn, Young-Keun;Jeong, Myung-Ho;Cho, Jeong-Gwan;Park, Jong-Choon;Kang, Jung-Chaee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.274-279
    • /
    • 1992
  • Clinical role of $^{99m}Tc-MIBI$ myocardial scintigraphy in the diagnosis of coronary artery disease (CAD) is now well accepted, however, the role of it in the identification of viable myocardium in patients with chronic CAD has not yet been clarified. To determine the usefulness of rest-injected $^{99m}Tc-MIBI$ scan as a marker of myocardial viability, the regional uptake of this agent at rest was compared with that of $^{201}Tl$ on reinjection and 24 hours after reinjection images. Subject patients were 13 chronic CAD patients who showed irreversible perfusion defect(s) on standard pharmacologic (dipyridamole) stress-redistribution images. Immediately after the redistribution images were obtained, 37 MBq thallium was injected at rest, and images were reacquired at 10 minutes and 24 hours after reinjection. After then 740 MBq $^{99m}Tc-MIBI$ was injected, and 1 hour later rest MIBI myocardial imaging was performed. Five sets of imagestress, redistribution, reinjection, delayed images of thallium, and rest image of MIBI) were then analyzed qualitatively and quantitatively. Left ventricle was arbitrarily divided into 9 segments (apex, basal and apical portions of anterior, septal, inferior, and lateral walls). Seven patients and 30 regions showed a fixed perfusion defect on the stress-redistribution images. Among 30 regions, 15 showed positive uptakes and 6 showed negative uptakes on both $^{201}Tl$ reinjection/delayed images and $^{99m}Tc-MIBI$ rest images. Five regions showed only thallium uptake and were regarded as viable clinically. Of four regions which showed only $^{99m}Tc-MIBI$ uptake, two were regarded as viable, while the other two were regarded as a nonviable scar tissue clinically. In conclusion, $^{201}Tl$ reinjection technique was more reliable in the identification of viable myocardium. However, the role of $^{99m}Tc-MIBI$ in identification of viable myocardium was still remained to be clarified because 2 of 9 regions showed only $^{99m}Tc-MIBI$ uptake and were regarded as viable tissues.

  • PDF

A Comparative Study of k-ε Algebraic Stress Model and Mellor-Yamada Model Applied to Atmospheric Dispersion Simulation Using Lagrangian Particle Dispersion Model (라그랑지 입자 모델을 이용한 k-ε Algebraic Stress Model과 Mellor-Yamada Model의 비교 연구)

  • 김상백;오성남
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • The $textsc{k}$-$\varepsilon$ algebraic stress model (KEASM) was applied to atmospheric dispersion simulation using the Lagrangian particle dispersion model and was compared with the most popular turbulence closure model in the field of atmospheric simulation, the Mellor-Yamada (MY) model. KEASM has been rarely applied to atmospheric simulation, but it includes the pressure redistribution effect of buoyancy due to heat and momentum fluxes. On the other hand, such effect is excluded from MY model. In the simulation study, the difference in the two turbulence models was reflected to both the turbulent velocity and the Lagrangian time scale. There was little difference in the vertical diffusion coefficient $\sigma$$_{z}$. However, the horizontal diffusion coefficient or calculated by KEASM was larger than that by MY model, coincided with the Pasquill-Gifford (PG) chart. The applicability of KEASM to atmospheric simulations was demonstrated by the simulations.s.