• 제목/요약/키워드: Stress protein

검색결과 2,188건 처리시간 0.045초

골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구 (HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS)

  • 임재석;김병렬;권종진;장현석;이의석;전상호;우현일
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.

Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments

  • Zhao, Yan;Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권5호
    • /
    • pp.722-731
    • /
    • 2020
  • Objective: Two experiments were conducted using 28 healthy multiparous sows to evaluate the oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Methods: Fourteen multiparous sows were used in Exp. 1 under a high thermal environment, and the other 14 multiparous sows were used in Exp. 2 under a moderate thermal environment. In both experiments, reproductive performances of sows were recorded. Plasma samples were collected on d 35, 60, 90, and 109 of gestation, and d 1 and 18 of lactation for malondialdehyde, protein carbonyls, 8-hydroxy-deoxyguanosine, immunoglobulin g (IgG), and IgM analysis. Results: For sows in Exp. 1, plasma malondialdehyde concentration on d 109 of gestation tended to be greater (p<0.05) than it on d 18 of lactation. Plasma concentration of protein carbonyl on d 109 of gestation was the greatest (p<0.05) compared with all the other days. Plasma concentrations of 8-hydroxy-deoxyguanosine on d 109 of gestation was greater (p<0.05) than d 18 of lactation in Exp. 1. For sows in Exp. 2, there was no difference of malondialdehyde and protein carbonyl concentration during gestation and lactation. In both Exp. 1 and 2, litter size and litter weight were found to be negatively correlated with oxidative stress indicators. Conclusion: Sows under a high thermal environment had increased oxidative stress during late gestation indicating that increased oxidative damage to lipid, protein, and DNA could be one of the contributing factors for reduced reproductive performance of sows in this environment. This study indicates the importance of providing a moderate thermal environment to gestating and lactating sows to minimize the increase of oxidative stress during late gestation which can impair reproductive outcomes.

N-recognins UBR1 and UBR2 as central ER stress sensors in mammals

  • Ly Thi Huong Luu Le;Seoyoung Park;Jung Hoon Lee;Yun Kyung Kim;Min Jae Lee
    • Molecules and Cells
    • /
    • 제47권1호
    • /
    • pp.100001.1-100001.8
    • /
    • 2024
  • In eukaryotes, a primary protein quality control (PQC) process involves the destruction of conformationally misfolded proteins through the ubiquitin-proteasome system. Because approximately one-third of eukaryotic proteomes fold and assemble within the endoplasmic reticulum (ER) before being sent to their destinations, the ER plays a crucial role in PQC. The specific functions and biochemical roles of several E3 ubiquitin ligases involved in ER-associated degradation in mammals, on the other hand, are mainly unknown. We identified 2 E3 ligases, ubiquitin protein ligase E3 component N-recognin 1 (UBR1) and ubiquitin protein ligase E3 component N-recognin 2 (UBR2), which are the key N-recognins in the N-degron pathway and participate in the ER stress response in mammalian cells by modulating their stability. Cells lacking UBR1 and UBR2 are hypersensitive to ER stress-induced apoptosis. Under normal circumstances, these proteins are polyubiquitinated through Lys48-specific linkages and are then degraded by the 26S proteasome. In contrast, when cells are subjected to ER stress, UBR1 and UBR2 exhibit greater stability, potentially as a cellular adaptive response to stressful conditions. Although the precise mechanisms underlying these findings require further investigation, our findings show that cytoplasmic UBR1 and UBR2 have anti-ER stress activities and contribute to global PQC in mammals. These data also reveal an additional level of complexity within the mammalian ER-associated degradation system, implicating potential involvement of the N-degron pathway.

Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells

  • Islam, Md Aminul;Noguchi, Yoko;Taniguchi, Shin;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.1006-1013
    • /
    • 2021
  • Objective: Cells have increased susceptibility to activation of apoptosis when suffering heat stress (HS). An effective supplementation strategy to mimic heat-induced apoptosis of bovine mammary epithelial cells (MECs) is necessary to maintain optimal milk production. This study aimed to investigate possible protective effects of the anti-apoptotic activity of 5-aminolevulinic acid (5-ALA) against HS-induced damage of bovine MECs. Methods: Bovine MECs were pretreated with or without 5-ALA at concentrations of 10, 100, and 500 µM for 24 h followed by HS (42.5℃ for 24 h and 48 h). Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress genes. Results: We found that 5-ALA induces cytoprotection via inhibition of apoptosis markers after HS-induced damage. Pretreatment of bovine MECs with 5-ALA resulted in dramatic upregulation of mRNA for nuclear factor erythroid-derived 2-like factor 2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, all of which are antioxidant stress genes. Moreover, 5-ALA pretreatment significantly suppressed HS-induced ER stress-associated markers, glucose-regulated protein 78, and C/EBP homologous protein expression levels. Conclusion: 5-ALA can ameliorate the ER stress in heat stressed bovine MEC via enhancing the expression of antioxidant gene.

괭생이 모자반 추출물의 소포체 스트레스 억제 효능 (Inhibitory effects of Sargassum horneri extract against endoplasmic reticulum stress in HepG2 cells)

  • 박소라;;차연수;김경아
    • Journal of Nutrition and Health
    • /
    • 제53권6호
    • /
    • pp.583-595
    • /
    • 2020
  • 본 연구에서는 괭생이 모자반 추출물의 소포체 스트레스 억제 효능을 연구하기 위하여 HepG2 간세포에 PA를 처리하여 소포체 스트레스를 유발한 후 추출물을 처리하여 UPR 관련 인자 발현 정도를 측정하였다. PA 750 μM 처리 시 UPR 관련 인자 (p-IRE1α, p-eIF2α, CHOP)의 단백질 발현이 가장 높게 나타나 소포체 스트레스를 효과적으로 유도함을 확인하였고 PA 750 μM를 12시간 처리 시 UPR 관련 인자 (p-IRE1α, p-eIF2α, CHOP)의 단백질 발현이 가장 높음을 확인하였다. 괭생이 모자반 처리 시 PA에 의해 상향 조절된 UPR 관련 인자의 mRNA 및 단백질 발현이 감소하여 PA로 유도된 소포체 스트레스에 대한 억제 효능이 있음을 보여주었다. 또한, 괭생이 모자반은 SIRT2, SIRT6 및 SIRT7의 mRNA의 발현을 증가시킴으로써 괭생이 모자반의 소포체 스트레스 억제 효능이 SIRT에 의한 것으로 확인되었다. 이러한 결과는 괭생이 모자반이 다양한 소포체 스트레스 관련 질병의 예방과 치료에 활용가능성이 있음을 시사한다.

Molecular Cloning of Maltooligosyltrehalose Trehalohydrolase Gene from Nostoc flagelliforme and Trehalose-Related Response to Stresses

  • Wu, Shuangxiu;He, Liang;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.830-837
    • /
    • 2011
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose trehalohydrolase (NfMTH) for trehalose biosynthesis was cloned by the degenerate primer- PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTH is 1,848 bp in length and encodes 615 amino acid residues, constituting a 70 kDa protein. The deduced amino acid sequence of NfMTH contains 4 regions highly conserved for MTHs. By expression of NfMTH in E. coli, the function of this protein was demonstrated, where the recombinant protein catalyzed the hydrolysis of maltooligosyl trehalose to trehalose. The expressions of MTH and maltooligosyltrehalose synthase in the filaments of N. flagelliforme were upregulated significantly under dehydration stress, NaCl stress, and high temperature-drought stress. The accumulations of both trehalose and sucrose in the filaments of N. flagelliforme were also improved significantly under the above stresses. Furthermore, trehalose accumulated in smaller quantities than sucrose did when under NaCl stress, but accumulated in higher quantities than sucrose did when under temperature-drought stress, indicating that both trehalose and sucrose were involved in N. flagelliforme adapted to stresses and different strategies conducted in response to various stress conditions.

단풍마 단백질 추출물의 스트레스로 인한 면역력 저하 개선 효과 (Immunopotentiating Effect of Protein Extract from Dioscorea quinqueloba in Stressed Mice)

  • 김주환;이선미;이동철
    • 한국식품영양학회지
    • /
    • 제31권2호
    • /
    • pp.252-257
    • /
    • 2018
  • It is noted that Dioscorea quinqueloba is a medicinal herb that is widely used to treat cardiovascular disease and is assessed as useful to treat other various medical conditions. The immunopotentiating effects of the protein extract (DQP-1) from Dioscorea quinqueloba were thus formally investigated in vivo under incident of cold stress. In this case study, the spleen and thymus weight in mice was shown to have decreased after a measured exposure to cold stress, while the adrenal gland weight in the mice was shown to have increased. The systematic oral administration of DQP-1 significantly recovered the weight loss of the spleen and suppressed the adrenal gland hypertrophy during the association with cold stress. Additionally, the DQP-1 also restored the ascorbic acid level in the adrenal gland reduced after cold stress. The cold stress exposure lowered the percentage of $CD4^+$ and $CD8^+$ cells in the mouse thymus as determined by the flow cytometric analysis, as well as the levels of some serum immunological cytokines(interleukin-2, interleukin-12, and interferon-${\gamma}$) in the studied mice. The resulting identified weakened immunity caused by cold stress was also recovered by a treatment with DQP-1. The DQP-1 significantly suppressed the formation of serum enzymes of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, which were systematically elevated during the cold stress episode. These results indicate that DQP-1 can improve immunity in mice that are characteristically weakened under stress.

Nitrosative protein tyrosine modifications: biochemistry and functional significance

  • Yeo, Woon-Seok;Lee, Soo-Jae;Lee, Jung-Rok;Kim, Kwang-Pyo
    • BMB Reports
    • /
    • 제41권3호
    • /
    • pp.194-203
    • /
    • 2008
  • Nitrosative modifications regulate cellular signal transduction and pathogenesis of inflammatory responses and neuro-degenerative diseases. Protein tyrosine nitration is a biomarker of oxidative stress and also influences protein structure and function. Recent advances in mass spectrometry have made it possible to identify modified proteins and specific modified amino acid residues. For analysis of nitrated peptides with low yields or only a subset of peptides, affinity 'tags' can be bait for 'fishing out' target analytes from complex mixtures. These tagged peptides are then extracted to a solid phase, followed by mass analysis. In this review, we focus on protein tyrosine modifications caused by nitrosative stresses and proteomic methods for selective enrichment and identification of nitrosative protein modifications.

Proteomic changes in leaves of sorghum exposed to copper stress in sorghum

  • Roy, Swapan Kumar;Kwon, Soo Jeong;Cho, Seong-Woo;Kamal, Abu Hena Mostafa;Kim, Sang-Woo;Sarker, Kabita;Jeong, Hae-Ryong;Lee, Moon-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.128-128
    • /
    • 2017
  • Copper (Cu) is very toxic to plant cells due to its inhibitory effects on many physiological and biochemical processes. In spite of its potential physiological and economic significance, molecular characterization after Cu stress has so far been grossly overlooked in sorghum. To explore the molecular alterations that occur in response to copper stress, the present study was executed in ten-day-old Cu-exposed leaves of sorghum seedlings. The growth of shoots was markedly reduced, and ionic alterations were prominently observed in the leaves when the seedlings were exposed to different concentrations (0, 100, and $150{\mu}M$) of $CuSO_4$. Using two-dimensional gels with silver staining, 643 differentially expressed protein spots (${\geq}1.5-fold$) were identified as either significantly increased or reduced in abundance. Of these spots, a total of 24 protein spots (${\geq}1.5-fold$) from Cu-exposed sorghum leaves were successfully analyzed by MALDI-TOF-TOF mass spectrometry. Of the 24 differentially expressed proteins from Cu-exposed sorghum leaves, a total of 13 proteins were up-regulated, and 11 proteins were down-regulated. The abundance of most identified protein species, which function in carbohydrate metabolism, stress defense, and protein translation, was significantly enhanced, while that of another protein species involved in energy metabolism, photosynthesis and growth and development were severely reduced. The resulting differences in protein expression patterns together with related morpho-physiological processes suggested that these results could help to elucidate plant adaptation to Cu stress and provide insights into the molecular mechanisms of Cu responses in $C_4$ plants. The over-expression of GAPDH plays a significant role in assisting Sorghum bicolor to attenuate the adverse effects of oxidative stress caused by Cu, and the proteins involved in resistance to stress helped the sorghum plants to tolerate high levels of Cu.

  • PDF

중금속이 Cyanobacterium synechocystis sp.PCC 6803의 성장과 단백질 합성에 미치는 영향 (Effects of Heavy Metals on Growth and Protein Synthesis in Cyanobacterium synechocystis sp. PCC 6803)

  • 강경미;장남기
    • 아시안잔디학회지
    • /
    • 제10권4호
    • /
    • pp.315-329
    • /
    • 1996
  • The changes of growth and protein synthesis pattern by aluminum (Al), cadmium (Cd), zinc (Zn) treatments were studied in Cyanobacterium synechocystis sp. PCC 6803. When exposed to Al from 5ppm to 3oppm, synechocystis grows normally. But more than that retard the growth of algae notably. The 0.05ppm Cd additions had no effect on the growth of algae. 0.1, 0.2, and 0.5ppm Cd inhibited growth. Under 1 and 2ppm Cd stress, growth was greatly diminished. Zn had dual effects. The growth of algae in media containing 5ppm was stimulated. As concentration increases more than l5ppm, growth inbition increases. Under 25ppm Zn stress, growth was greatly diminished. According to logistic theory, r and K values of each heavy metal-treated groups were estimated. Correlation analysis of r and K values with metal concentration shows that there is negative correlation between K and concentration in Cd and Zn treatments. Critical concentration which shows lethal or sublethal effect was estimated by t-test of each r and K value. The cells cultured in 10, 20, 30, 40 and 5oppm of Al, 1 and 2ppm of Cd, and 10, 15, 20, 25 and 30ppm of Zn for 4 days was used for protein analysis. Analysis of protein synthesis with SDS-PACE showed alterations of protein synthesis pattern. The synthesis of protein about 220kD increased markedly. In this study, it showed that resistance mechanism against Al, Cd, and Zn is K selection and that metal stress induced the change of protein synthesis in Cyanobacterium synechocystis sp. PCC 6803.Key words:Cyanobacterium synechocystis sp. FCC 6803, Heavy metals, Aluminum, Cadmiutm Zinc, Crowth, Frotein synthesis.

  • PDF