• Title/Summary/Keyword: Stress intensity

Search Result 2,004, Processing Time 0.029 seconds

Autophagy Inhibitor, 3-Methyladenine, Reduces Preimplantation Development and Blastocyst Qualities in Pigs

  • Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Lee, E-Nok;Son, Hyeong-Hoon;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.287-294
    • /
    • 2011
  • Autophagy is a process of intracellular bulk protein degradation, in which the accumulated proteins and cytoplasmic organelles are degraded. It plays important roles in cellular homeostasis, apoptosis, and development, but its role during early embryo development remains contentious. Therefore, in the present study, we investigated the effects of 3-methyladenine (3-MA) on early embryonic development in pigs, we also investigated several indicators of developmental potential, including mitochondrial distribution, genes expressions (autophagy-, apoptosis- related genes), apoptosis and ER-stress, which are affected by 3-MA. After in vitro maturation and fertilization, presumptive pig embryos were cultured in PZM-3 medium supplemented with 3-MA for 2 days at $39^{\circ}C$ 5% $CO_2$ in air. Developmental competence to the blastocyst stage in the presence of 3-MA was gradually decreased according to increasing concentration. Thus, all further experiments were performed using 2 mM 3-MA. Blastocysts that developed in the 3-MA treated group decreased LC3-II intensity and expressions of autophagy related genes than those of the untreated control, resulting in down-regulates the autophagy. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 3-MA treated group compared with control ($6.0{\pm}1.0$ vs $3.3{\pm}0.6$, p<0.05). Also, the expression of the pro-apoptotic gene Bax increased in 3-MA treated group, whereas expression of the anti-apoptotic gene Bcl-XL decreased. Mito Tracker Green FM staining showed that blastocysts derived from the 3-MA treated group had lower mitochondrial integrity than that of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. Then, the expression of the spliced form of pXBP-1 product (pXBP-1s) increased in 3-MA treated group, resulting increase of ER-stress. Taken together, these results indicate that inhibition of autophagy by 3-MA is closely associated with apoptosis and ER-stress during preimplantation periods of porcine embryos.

Improvement of Mechanical Properties of Mg alloys through Control of Grain Size and Texture (결정립크기와 집합조직제어를 통한 마그네슘 합금의 기계적 성질 개선)

  • Kim, W.J.;Lee, J.B.;Kim, W.Y.;Jeong, H.G.;Park, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • The effects of lowering ECAP temperature during ECAP process and Post-ECAP annealing on microstructure, texture and mechanical properties of the AZ31 alloys have been investigated in the present study. The as-extruded materials were ECAP processed to 2 passes at 553K prior to subsequent pressing up to 6 passes at 523K or 493K. When this method of lowering ECAP temperature during ECAP was used, the rods could be successfully deformed up to 6 passes without any surface cracking. Grain refinement during ECAP process at 553K might have helped the material to endure further straining at lower deformation temperatures probably by increasing the strain accommodation effect by grain boundary sliding, causing stress relaxation. Texture modification during ECAP has a great influence on the strength of Mg alloys because HCP metals have limited number of slip systems. As slip is most prone to take place on basal planes in Mg at room temperature, the rotation of high fraction of basal planes to the directions favorable for slip as in ECAP decreases the yield stress appreciably. The strength of AZ31 Mg alloys increases with decrease of grain size if the texture is constant though ECAP deformation history is different. A standard positive strength dependence on the grain size for Mg alloys with the similar texture (Fig. 1) supports that the softening of ECAPed Mg alloys (a negative slope) typically observed despite the significant grain refinement is due to the texture modification where the rotation of basal planes occurs towards the orientation for easier slip. It could be predicted that if the original fiber texture is restored after ECAP treatment yielding marked grain refinement, yield stress as high as 500 MPa will be obtained at the grain size of ${\sim}1{\mu}m$. Differential speed rolling (DSR) with a high speed ratio between the upper and lower rolls was applied to alter the microstructure and texture of the AZ31 sheets. Significant grain refinement took place during the rolling owing to introduction of large shear deformation. Grain size as small as $1.4{\mu}m$ could be obtained at 423K after DSR. There was a good correlation between the (0002) pole intensity and tensile elongation. This result indicates that tensile ductility improvement in the asymmetrically rolled AZ31 Mg alloys is closely related to the weakening of basal texture during DSR. Further basal texture weakening occurred during annealing after DSR. According to Hall-Petch relation shown in Fig. 1, the strength of the asymmetrically rolled AZ31 is lower than that of the symmetrically rolled one when compared at the same grain size. This result was attributed to weakening of fiber texture during DSR. The DSRed AZ31, however, shows higher strength than the ECAPed AZ31 where texture has been completely replaced by a new texture associated with high Schmid factors.

  • PDF

Evaluation of Field Nonlinear Modulus of Subgrnde Soils Using Repetitive Static Plate Bearing Load Test (반복식 평판재하시험을 이용한 노상토의 현장 변형계수 평가)

  • Kim Dong-Soo;Seo Won-Seok;Kweon Gi-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.67-79
    • /
    • 2005
  • The field plate load test has a good potential for determining modulus since it measures both plate pressure and settlement. Conventionally the modulus has been assumed to be a constant secant value defined from the settlement of the plate at a given load intensity. A constant modulus (modulus of subgrade reaction, k), however, may not be a representative value of subgrade soil under working load. Field strain(o. stress)-dependent modulus characteristics of subgrade soils, at relatively low to intermediate strains, are important in the pavement design. In this study, the field strain dependent moduli of subgrade soils were obtained using cyclic plate load test. Testing procedure and data reduction method are proposed. The field crosshole and laboratory resonant column tests were also performed to determine field nonlinear modulus at $0.001\%\;to\;0.1\%$ strains, and the modulus values and nonlinear trends are compared to those obtained by cyclic plate load tests. Both modulus values match relatively well when the different state of stress between two tests was considered, and the applicability of field cyclic plate load test for determining nonlinear modulus values of subgrade soils is verified.

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

A Numerical Study on the Wintertime Upwind flow of the Yellow Sen in an Idealized Basin

  • Kyung, Tae-Jung;Park, Chang-Wook;Oh, Im-Sang;Lee, Ho-Jin;Kang, Hyoun-Woo
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.91-107
    • /
    • 2002
  • The wintertime upwind flow in the Yellow Sea has been investigated through a series of two-dimensional numerical experiments in an idealized basin. A total of 10 experiments have been carried out to examine the effects of wind forcing, bottom friction and the presence of oceanic currents sweeping the shelf of the East China Sea. A spatially uniform steady and periodic wind stresses are considered along with comparison of linear and quadratic formulations. The wind-driven flow in the absence of oceanic current has been computed using Proudman open boundary condition (POBC), while the wind-driven current in the presence of oceanic current has been computed using Flather’s radiation condition (FOBC). The oceanic currents to be prescribed at the open boundary have been simulated by specifying uniform sea level gradients across the Taiwan Strait and the eastern ECS shelf, Calculations show that, as seen in Lee et al. (2000), oceanic flow little penetrates into the Yellow Sea in the absence of wind forcing unless a unrealistically low rate of bottom frictional dissipation is assumed. Both steady and time-periodic wind stresses invoke the upwind flow along the central trough of the Yellow Sea, independently of the presence of the oceanic current. The presence of oceanic currents very marginally alters the north-south gradient of the sea surface elevation in the Yellow Sea. Changes in the intensity and direction of the wind-induced mean upwind flow are hardly noticeable in the Yellow Sea but are found to be significant near Cheju Island where the gradient is reduced and therewith contribution of Ekman transport increases. In case of steady wind forcing circulation patterns such as two gyres on the slope sides, a cyclonic gyre on the western slope and an anticyclonic gyre on the eastern slope persist and the upwind flow composes part of the cyclonic gyre in the Yellow Sea. While in case of the time-periodic wind stress the appearance and disappearance of the patterns are repeated according to the time variation of the wind stress and the upwind flow accordingly varies with phase delay, mostly intensifying near the time when the wind forcing is approximately near the middle of the decaying stage.

Screening of saline tolerant plants and development of biological monitoring technique for saline stress . 1. Survey of vegetation in saline region and determination of saline tolerance of the plant species of the region. (내염성 식물의 탐색 및 생물학적 염해 모니터링 기술의 개발 1. 염해지 식생분석 및 식물종의 내염성 평가)

  • Kang, Byeung-Hoa;Shim, Sang-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.26-33
    • /
    • 1998
  • This experiment was conducted to classify the plant species occurring in the saline reclaimed land by saline tolerance. The vegetation of reclaimed land was composed of various plant species from halophyte to glycophyte showing different saline tolerances. In the investigated saline region, reclaimed land of Youngjong island, Inchun city, 175 species belonging to 32 families were found. Our survey was carried out in two region, having different salinity due to different desalinization. The electricalconductivity (EC) of more saline region showed 48.0mS/cm nd the other region showed 13.0mS/cm. It is assumed that intensity of precipitation and runoff of rainfall may cause salinity gradient in the investigated region. The plant species occurred in the experimental region were classified as 72 species of annual, 42 species of biennial, and 61 species of perennial according to life cycle. For knowing relationship between vegetation of saline region and saline tolerance of occurring species, we tested the saline susceptibility of plant species collected at the saline regions. Testing plants were cultured by nutrient solution containing 200 mM NaCl, the critical concentration of survival in glycophytes. The saline tolerance was graded by the growing capacity in the sand-culture system. The more saline-tolerant species screened by sand culture were Atriplex gmelini, Suaeda asparagoides, Aster tripolium, Suaeda maritima, Salicornia herbacea, and Suaeda japonica. The most saline tolerant family was Chenopodiaceae. Poaceae, Cyperaceae, and Brassicaceae showed relatively high tolerance to saline stress. In the course of growth under the high saline condition, the most noticeable change was the darkening of leaves by increasing of chlorophyll content. The chlorophyll contents were increased with saline stress in most species.

  • PDF

Relationship between Oriental Obesity Pattern, Life Habitual Factors and Psychological Factors in Korean Obese and Overweight Women (비만 및 과체중 성인 여성에서 한방비만변증과 생활 습관 및 심리적 요인 간의 상관관계)

  • Cho, Yu-Jeong;Lee, A-Ra;Hwang, Mi-Ja;Song, M-Yeon
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.11 no.2
    • /
    • pp.15-24
    • /
    • 2011
  • Objectives: The aim of the study was to investigate the relationship between oriental obesity pattern, life habitual factors(eating attitude, physical activity) and psychological factors(depression, stress, self-esteem) in korean obese and overweight women. Methods: This study was performed in obese and overweight(BMI ${\geq}$ 23 kg/$m^2$) women in Korea (n=56). Simple anthropometry including weight, BMI, waist circumference, BIA(bioelectrical impedance analysis) were done. To assess psychological factors, the Rosenberg self-esteem scale (SES) questionnaire, Beck depression inventory (BDI) questionnaire and stress response inventory (SRI) questionnaire were administered. Regarding diet, Korean eating attitude test(KEAT-26) was done. International physical activity questionnaire(IPAQ) was administered for exercise and physical activity intensity and quantities. All values were verified using correlation analysis. Results: 1. The subjects had stagnation of the liver qi>food accumulation>yang deficiency>blood stasis>spleen vacuity in the order. 2. Stagnation of the liver qi score had significant relationships with self-esteem(r=-0.520, p<0.05) and depression(r=0.688, p<0.01) in stagnation of the liver qi group. There was a relationship between food accumulation score and eating attitude(r=0.784, p<0.01) in food accumulation group. 3. Lean mass had a significant relationship with self-esteem(r=0.434, p<0.05) fat mass had a significant relationship with stress (r=0.633, p<0.01) and in stagnation of the liver qi group. 4. Physical activity had significant relationships with lean mass(r=0.628, p<0.01) and with fat mass(r=-0.478, p<0.05) in group. Conclusions: This study maintained that psychological factors play major roles in obesity with symptoms of stagnation of the liver qi and life habit(dietary factors and physical activity) in food accumulation.

Metrical Structure Change Phenomenon of K-Pop Songs : Focusing on Dance Music (K-Pop 노랫말의 운율구조 변화 현상 : 댄스음악을 중심으로)

  • Seo, Keun-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.7
    • /
    • pp.343-362
    • /
    • 2020
  • English is a stress-timed language that has a phonetic system in which the speech is restructured by stress changes. On the other hand, Korean is a syllable-timed language in which each syllable is pronounced at almost the same length and intensity, and Korean and English have distinctly different metrical systems in general speech. However, as the language of the lyrics in K-Pop music is mixed in both languages, Korean and English, the Korean lyrics in K-Pop music have a metrical system by stress changes as in English. The writer's view is that the change in the metrical structure of Korean lyrics is inevitable in order to sustain the new Korean Wave. Therefore, in this study, dance music - a major genre of K-Pop music that focuses on rhythm expression - is classified into 1998, 2003, and 2009 according to the changes in the Korean Wave, and the metrical structure of each period is compared and analyzed. Based on this, the current K-Pop metrical structure features are derived and the K-Pop Korean writing method is proposed that deviates from the existing limited writing method which allocates one syllable per note. The author hopes this research will be used as a methodology for writing lyrics in Korean songs in K-Pop, as well as a way to encourage the use of Korean lyrics.

Effect of Deposition and Heat Treatment Conditions on the Electrical and Optical Properties of AZO/Cu/AZO Thin Film (증착 및 열처리 조건에 따른 AZO/Cu/AZO 박막의 전기적·광학적 특성 평가)

  • Chan-Young Kim;Ha-Eun Lim;Gaeun Yang;Sukjeang Kwon;Chan-Hee Kang;Sang-Chul Lim;Taek Yeong Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.142-150
    • /
    • 2023
  • AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9×10-4 Ω·cm and about 1.0×10-4 Ω·cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 ℃.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.