• Title/Summary/Keyword: Stress intensity

Search Result 2,017, Processing Time 0.023 seconds

Measurement of Stress Intensity Factor of Isotropic Material Using SPATE (SPATE에 의한 등방성체의 응력확대계수 측정)

  • Hwang, Jae-Seok;Seo, Jae-Guk;Lee, Hyo-Jae;Nam, Jeong-Hwan;Rowlangs, R.E.;Choe, Yeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.393-404
    • /
    • 1997
  • SPATE(Stress Pattern Analysis by Thermal Emission) can be effectively used to analyze the stress distributions of isotropic structure under the repeated load by non-contact. In this research, the measuring method and the measuring concept of stress intensity factor of isotropic material by SPATE are suggested. The validity of the method and the concept was certified through SPATE experiment.

Measurement of Stress Intensity Factor of Orthotropic Material Using SPATE (SPATE에 의한 직교이방성체의 응력확대계수 측정)

  • Hwang, Jae-Seok;Suh, Jae-Guk;Lee, Hyo-Jae;Nam, Jeong-Hwan;Rpwlands, R.E.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3224-3233
    • /
    • 1996
  • SPATE(Stress Pattern Analysis by Thermal Emission) can be effectively used to analyze the stress distribution of the orthotropic structure under the repeated load by non-contact. In this research, the measuring conception and method of stress intensity factor of orthotropic material using SPATE are suggested. The relationships between the maximum values of SPATE signal and $1/\sqrt{X'}$ (or $1/\sqrt{y'}$) are theoretically established in the vicinity of crack tip of the orthotropic material. It is certified through SPATE experiment that their linear quality is very excellent.

Higher Order Eigenfields in Mode II Cracks Under Elastic-Plastic Deformation

  • Insu Jeon;Lee, Yongwoo;Seyoung Im
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.254-268
    • /
    • 2003
  • The explicit formulation of the J-integral and the M-integral is constructed in terms of the stress intensity factor and the higher order stress coefficients for Mode II cracks under small or large scale yielding. Furthermore, the stress intensity factor and the higher order stress coefficients as well are computed with the aid of the two-state J- and the M-integral, which is found to be accurate and efficient. It is found that the contribution from the higher order singularities to the J-integral is closely related to the configuration of the plastic zone.

Treatment of Stainless Steel Cladding in Pressurized Thermal Shock Evaluation: Deterministic Analyses

  • Changheui Jang;Jeong, lll-Seok;Hong, Sung-Yull
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.132-144
    • /
    • 2001
  • Fracture mechanics is one of the major areas of the pressurized thermal shock (PTS) evaluation. To evaluate the reactor pressure vessel integrity associated with PTS, PFM methodology demands precise calculation of temperature, stress, and stress intensity factor for the variety of PTS transients. However, the existence of stainless steel cladding, with different thermal, physical, and mechanical property, at the inner surface of reactor pressure vessel complicates the fracture mechanics analysis. In this paper, treatment schemes to evaluate stress and resulting stress intensity factor for RPV with stainless steel clad are introduced. For a reference transient, the effects of clad thermal conductivity and thermal expansion coefficients on deterministic fracture mechanics analysis are examined.

  • PDF

Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions (7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동)

  • 신용승
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

Determination of Stress Intensity Factor for a Crack Perpendicular to Bimaterial Interface by Finite Element Method (유한요소법에 의한 이종재료 접합면에 수직인 균열의 응력확대계수 결정)

  • 임원균;김상철;이창수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2398-2406
    • /
    • 1993
  • Abdi's numerical method(ref.13) for representing a stress singularity by shifting the mid-side nodes of isoparametric elements is reviewed. A simple technique to obtain the optimal position of the mid-side nodes in quadratic isoparametric finite element is presented. From this technique we can directly obtain the position of the side-nodes adjacent to the crack tip. It is also observed that the present technique provides good accuracy for the expression of the opening displacement and the determination of the mid-side nodes for more wide range of material properties than that obtained by Abdicant the finite element method is applied to determine stress intensity factors for pressurized crack perpendicular to and terminating at the interface of two bonded dissimilar materials. A proper definition for stress intensity factors of a crack perpendicular to bimaterial interface is provided. It is based upon a near-tip displacement solutions on the crack surface for interface crack between two dissimilar materials. Numerical testing is carried out with the eight-node and six-node elements. The results obtained are compared with the previous solutions.

Fracture mechanics approach to bending fatigue behavior of cruciform fillet welded joint (십자형 필렛 용접 이음부 의 굽힘피로 특성 에 대한 파괴역학적 고찰)

  • 엄동석;강성원;김영기
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.52-63
    • /
    • 1985
  • Fillet welded joints, specially in ship structure, are well known the critical part where stress concentrate or crack initiates and grows. This paper is concerned with the study of the behavior of fatigue crack growth t the root and toe of load carrying cruciform fillet welded joints under three points bending by the determination of stress intensity factor from the J-Integral, using the Finite Element Method. The stress intensity factor was investigated in accordance to the variation of the weld size (H/Tp). weld penetration (a/W) and plate thickness (2a'/Tp). As mixed mode is occurred on account of shearing force under the three points bending, Stern's reciprocal theory is applied to confirm which mode is the major one. The main results may be summarized as follows 1) The calculation formula of the stress intensity factor at the both of root and toe of the joint was obtained to estimate the stress intensity factor in the arbitrary case. 2) The change of stress field around crack tip gives much influence on each other at the roof and toe as H/Tp decreases. 3) Mode I is a major mode under the three points bending.

  • PDF

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

Determination of Stress Intensity Factors by Strain Measurement (스트레인측정에 의한 응력확대계수 결정)

  • Lee, O.S.;Nah, K.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.147-155
    • /
    • 1995
  • Recent experimental studies have been shown that strain gages can be employed to determine either static or dynamic stress intensity factors $K_{I}$ wiht relatively simple experiments. However, it does not usually provide a reliable value of stress intensity factor because of local yielding and limited regions for strain gage placement at the vicinity of the crack tip. This paper attempted to define a valid region and to indicate procedures for locating and orienting the strain gage to determine static toughness $K_{Is}$ accurately form one strain gage readings with respect to varying loadings. The strain gage methods was used for compact tension specimens made of Polycarbonate and PMMA(polymethyl methacrylate). Series expansions of the static and dynamic strain fields are applied. Strain gage orientation and location are then studied to optimize the strain response. Especially, in the dynamic experiment, the specimen employed is an oversized Charpy V-notch specimen which has been modified to provide significant constraint with a large elevation of the flow stress. The impact behavior of the specimen is monitored by placing strain gage near the crack tip. The dynamic toughness $K_{Id}$ is determined from the strain time traces of this gage.e.

  • PDF