• 제목/요약/키워드: Stress fields

검색결과 846건 처리시간 0.029초

Electrical and Rheological Properties of Chitosan Malonate Suspension

  • Choi, Ung-su
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.14-17
    • /
    • 2003
  • The electrical and rheological properties of a chitosan malonate suspension in silicone oil was investigated by varying the electric fields, volume fractions of particles, and shear rates, respectively, The chitosan malonate susepnsion showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of multiple chains upon application of an electric field. The shear stress fur the suspension exhibited a linear dependence on the volume fraction and an electric field power of 1.88. On the basis of the experimental results, the newly synthesized chitosan malonate suspension was found to be an anhydrous ER fluid.

가선재의 피로수명 예측 (Fatigue Life Prediction for Electric Railway Catenary wires)

  • 김용기;장세기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.558-567
    • /
    • 2003
  • The catenary wires are damaged by periodic running of train as well as repeated stress. The wires are also degraded by atmosphere corrosion at fields. Corrosion of wires increased surface roughness and deteriorated mechanical properties by providing fatigue crack initiation sited resulting in a bad effect on service life of the wires. Fatigue test of catenary wires performed to estimate service lifetime. Also, simulation to analyze stress on catenary wires was conducted through modelling the finite elements for dynamic behaviors of wires. Fatigue life of catenary wires was estimated with fatigue and simulation tests.

  • PDF

전단지배형 부재의 변형능력 산정을 위한 모형 (Deformability Models of Shear Controlled Members)

  • 홍성걸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.357-360
    • /
    • 2004
  • Estimation of deformation capacity of non-flexural reinforced concrete members is proposed using basic concepts of limit analysis and the virtual work method. This new approach starts with construction of admissible stress field as for an equilibrium set. Failure mechanisms compatible with admissible stress fields are postulated as for displacement set. It is assumed that the ultimate deformations as result of failure mechanisms are controlled by ultimate strain of concrete in compression. The derived formula for deformability of deep beams in shear shows reasonable range of ultimate displacement.

  • PDF

노치재의 피로균열진전과 응력확대계수 평가에 관한 연구 (A Study on Fatigue Crack Growth and Stress Intensity Factors of Notch Materials)

  • 이종형;이상영;이창헌;김윤곤;임춘규;이춘곤;권영신
    • 한국산업융합학회 논문집
    • /
    • 제10권3호
    • /
    • pp.165-169
    • /
    • 2007
  • Prediction of fatigue duration is attainable from the analysis of the growth rate of the fatigue crack, and the property of the fatigue crack growth is determined by the calculation of the stress intensity factor. And the evaluation of the stress intensity factor, K comes from the stress analysis of the vicinity of crack tip of the continuum. This study describes a simple method to decide the stress intensity factor for the small crack at the sharp edge notches. The proposed method is based on the similarities between elastic stress fields of the notch tip described by two parameters, the stress concentration factor K, the radius of arc of the notch. And it is applicable to the analysis of the semi-elliptical penetration cracks and the edge notches.

  • PDF

평판(平板)에 붙은 Stiffener 속에서의 전단응력(剪斷應力)의 분포(分布) (The Maximum Shear Stress Distribution in a Stiffener attached to a Plate)

  • 임상전
    • 대한조선학회지
    • /
    • 제3권1호
    • /
    • pp.19-24
    • /
    • 1966
  • The maximum shear stress distribution in a stiffening flat attached to a plat undergoing a single tensile force has been investigated by photoelastic method. In the experiments a photoelastic model, as shown in Fig. 1, has been studied in the fields of a polariscope, as shown in Fig. 2. Fig. 3 shows the isoclinics and Fig. 4 and 5 are stress trajectories of the principal stresses and maximum shear stresses, respectively. Fig. 6 is the isochromatics in light field. The maximum shear stress at each point in the stiffener were determined from the isochromatics in both of light field of light field and dark field. Then the maximum shear stresses were divided by the average shear stress in the model, to obtain the ratio ${\tau}max/{\tau}av$ at each point. Finaly the variations of the ratio ${\tau}max/{\tau}av$ along the horizontal and vertical lines in the stiffener have been plotted, as shown in Fig. 7 and 8. The conclusions reached in this investigation are as follows: (1) The shear stresses transmitted to the stiffener through the juncture are concentrated on the end portions. (2) The maximum shear stress at the ends of the stiffener reaches to about 4 times of average shear stress. (3) The irregularities in the stress distribution are restricted in the end portions of the stiffener.

  • PDF

다층용접배관의 용접부 잔류음력분포에 대한 기하학적형상과 용접후처리의 영향 (The Effects of Geometrical Shape and Post Weld Treatment on Welding Residual Stress Distribution of Weldment in Multi-pass Welded Pipe)

  • 김철한;조선영;김복기;배동호
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the residual stress fields of multi-pass welded were analyzed by FEA under various geometrical conditions. In order to estimate the effects of pipe geometries on residual stress distribution, welding processes of each model were performed under the same heat cycles. And then, the influence of cutting off the weld bead on the residual stress redistribution was also estimated. From the results, in the range of t/D=0.05, axial residual stresses on the outer surface of the welded pipe were linearly decreased with pipe diameter increase. On the other hand, hoop residual stresses were not influenced by them. And both axial and hoop residual stresses on the outer surface of the welded pipe were increased with pipe diameter increase. But, when t/D was smaller than 0.05, they were converged in the nearly same value. The maximum residual stresses were generated at around HAZ. It in therefore necessary to consider them in welding design, strength evaluation, and analysis of fracture characteristics.

  • PDF

변형 및 복원공정에 따른 실린더 형상 구조물의 응력분포 특성 (Evaluation of Characteristics for Stress Distribution on Cylindrical Beam Structure by Deformation and Restoration Process)

  • 박치용;김진원;부명환
    • 대한기계학회논문집A
    • /
    • 제29권1호
    • /
    • pp.132-138
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore damaged part of large machinery and structure which is installed in the hazard working place. In this paper, to estimate stress distribution which occurs during damage and restoration of cylindrical beam structure, the finite element technique has been used. A finite element model was verified by experiment for non deformed cylindrical beam structure. The displacements and elastic recovery have an excellent agreement between experiment and finite element analysis. The variations of stress distribution on deformation and restoration procedure for surfaces have been examined. The maximum von Mises stress appears in the surface for deformation and restoration procedure. In deformation procedure, the maximum stress occurs in the vicinity of support body. In restoration procedure, the maximum stress occurs in the vicinity of the fixing body. The fixing body allows avoiding stress concentration in adjacent support structure boundary.

Survival Factor Gene FgSvf1 Is Required for Normal Growth and Stress Resistance in Fusarium graminearum

  • Li, Taiying;Jung, Boknam;Park, Sook-Young;Lee, Jungkwan
    • The Plant Pathology Journal
    • /
    • 제35권5호
    • /
    • pp.393-405
    • /
    • 2019
  • Survival factor 1 (Svf1) is a protein involved in cell survival pathways. In Saccharomyces cerevisiae, Svf1 is required for the diauxic growth shift and survival under stress conditions. In this study, we characterized the role of FgSvf1, the Svf1 homolog in the homothallic ascomycete fungus Fusarium graminearum. In the FgSvf1 deletion mutant, conidial germination was delayed, vegetative growth was reduced, and pathogenicity was completely abolished. Although the FgSvf1 deletion mutant produced perithecia, the normal maturation of ascospore was dismissed in deletion mutant. The FgSvf1 deletion mutant also showed reduced resistance to osmotic, fungicide, and cold stress and reduced sensitivity to oxidative stress when compared to the wild-type strain. In addition, we showed that FgSvf1 affects glycolysis, which results in the abnormal vegetative growth in the FgSvf1 deletion mutant. Further, intracellular reactive oxygen species (ROS) accumulated in the FgSvf1 deletion mutant, and this accumulated ROS might be related to the reduced sensitivity to oxidative stress and the reduced resistance to cold stress and fungicide stress. Overall, understanding the role of FgSvf1 in F. graminearum provides a new target to control F. graminearum infections in fields.

혼합모드하중상태에서 전파하는 피로크랙특성에 관한 연구 (Study on the Characteristics of Propagating Fatiguc Crack under Mixed-Mode Loading Condition)

  • 송삼홍;최진호;임진학
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.644-649
    • /
    • 1993
  • Practical structures are subject not only to tension but also to shear and torsional loading. In this study, the mode 1 and 2 stress intensity factors of specimens were calculated by using elastic finite element mothod. The stress fields at the crack tip subjected to mixed-mode loading were also studied by usingf eleatic finite element method and were compared with theoretical results. The three-point-bending, four-point-bending, and mixed-mode-loading experiment were carried out. And, crack propagation rate da/dN and crack growth direction were examined. Also, the elastic finite element method was applied to calculate the stress intensity factors of branch crack tip and we relate the stress intenity factor range of branch crack tip(the result of FEM) to crack propagation rate(the experimental result). The .DELTA. -da/dN relation corelated with that of mode 1.

  • PDF

면외하중을 받는 상이한 직교 이방성 평면내의 평행균열 (Parallel Crack in Bonded Dissimilar Orthotropic Planes Under Out-of-Plane Loading)

  • 최성렬;권용수;채영석
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.170-180
    • /
    • 1995
  • A parallel crack in bonded dissimilar orthotropic planes under out-of-plane loading is analyzed. The problem is formulated by Fourier integral transforms, and reduced to a pair of dual integral equations. By solving the integral equations, the asymptotic stress and displacement fields near the crack tip are determined in closed form, from which the stress intensity factor and energy release rate are obtained. Discontinuity in the stress intensity factor as the distance ratio h/a of the parallel crack approaches zero is found, while the energy releas rate is shown to be continuous at h/a = 0. This information can immediately be used to generate the stress intensity factor for the parallel crack near the interface. By employing "the maximum energy release rate criterion", it could be shown in the case of no existing crack initially that the parallel crack is formed far from the interface for the more compliant material, while it is formed close to the interface for the stiffer material. material.