• Title/Summary/Keyword: Stress currents

Search Result 134, Processing Time 0.028 seconds

Current Characteristics in the Silicon Oxides (실리콘 산화막의 전류 특성)

  • Kang, C.S.;Lee, Jae Hak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.595-600
    • /
    • 2016
  • In this paper, the oxide currents of thin silicon oxides is investigated. The oxide currents associated with the on time of applied voltage were used to measure the distribution of voltage stress induced traps in thin silicon oxide films. The stress induced leakage currents were due to the charging and discharging of traps generated by stress voltage in the silicon oxides. The stress induced leakage current will affect data retention in memory devices. The oxide current for the thickness dependence of stress current and stress induced leakage currents has been measured in oxides with thicknesses between $109{\AA}$, $190{\AA}$, $387{\AA}$, and $818{\AA}$ which have the gate area $10^{-3}cm^2$. The oxide currents will affect data retention and the stress current, stress induced leakage current is used to estimate to fundamental limitations on oxide thicknesses.

The Trap Characteristics of SILC in Silicon Oxide for SoC

  • Kang C. S.
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.209-212
    • /
    • 2004
  • In this paper, The stress induced leakage currents of thin silicon oxides is investigated in the nano scale structure implementation for Soc. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The channel current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between $41\square\;and\;113.4\square,$ which have the channel width x length 10x1um, respectively. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhitory state.

  • PDF

SILC of Silicon Oxides

  • Kang, C.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.428-431
    • /
    • 2003
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between $113.4{\AA}$ and $814{\AA}$, which have the gate area 10-3cm2. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.

  • PDF

The Oxide Characteristics in Flash EEPROM Applications (플래시 EEPROM 응용을 위한 산화막 특성)

  • 강창수;김동진;강기성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.855-858
    • /
    • 2001
  • The stress induced leakage currents of thin silicon oxides is investigated in the VLSI implementation of a self learning neural network integrated circuits using a linearity synapse transistor. The channel current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 41 ${\AA}$, 86${\AA}$, which have the channel width ${\times}$ length 10 ${\times}$1${\mu}$m, 10 ${\times}$0.3${\mu}$m respectively. The stress induced leakage currents will affect data retention in synapse transistors and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor made by thin silicon oxides has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the channel current. The stress induced leakage currents affected excitatory state and inhitory state.

  • PDF

Characteristics of Trap in the Thin Silicon Oxides with Nano Structure

  • Kang, C.S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.32-37
    • /
    • 2003
  • In this paper, the trap characteristics of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4nm and 814nm, which have the gate area 10$\^$-3/ $\textrm{cm}^2$. The stress induced leakage currents will affect data retention, and the stress current and transient current is used to estimate to fundamental limitations on oxide thicknesses.

Stress Induced Leakage Currents in the Silicon Oxide Insulator with the Nano Structures (나노 구조에서 실리콘 산화 절연막의 스트레스 유기 누설전류)

  • 강창수
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.335-340
    • /
    • 2002
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the ULSI implementation with nano structure transistors. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The stress and transient currents were due to the charging and discharging of traps generated by high stress voltage in the silicon oxides. The transient current was caused by the tunnel charging and discharging of the stress generated traps nearby two interfaces. The stress induced leakage current will affect data retention in electrically erasable programmable read only memories. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between 113.4${\AA}$ and 814${\AA}$, which have the gate area $10^3cm^2$. The stress induced leakage currents will affect data retention and the stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.

Thickness Dependence of Stress Currents in Silicon Oxide (실리콘 산화막에서 스트레스 전류의 두께 의존성)

  • 강창수;이형옥;이성배;서광일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.102-105
    • /
    • 1997
  • The thickness dependence of stress voltage oxide currents has been measured in oxides with thicknesses between 10nm and 80nm. The oxide currents were shown to be composed of stress current and transient current. The stress current was caused by trap assited tunneling through the oxide. The transient current was caused by the tunneling charging and discharging of the trap in the interfaces. The stress current was used to estimate to the limitations on oxide thicknesses. The transient current was used to the data retention in memory devices.

  • PDF

The Characteristics of Silicon Oxides for Microelectromechanic System (MEMS 설계를 위한 실리콘 산화막 특성)

  • Kang, Chang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.371-371
    • /
    • 2010
  • In this paper, the stress induced leakage currents of thin silicon oxides is investigated in the MEMS implementation with nano structure. The stress and transient currents associated with the on and off time of applied voltage were used to measure the distribution of high voltage stress induced traps in thin silicon oxide films. The oxide current for the thickness dependence of stress current, transient current, and stress induced leakage currents has been measured in oxides with thicknesses between $41{\AA}$, which have the gate area $10^{-3}cm^2$. The stress current, transient current is used to estimate to fundamental limitations on oxide thicknesses.

  • PDF

Thickness dependence of silicon oxide currents (실리콘 산화막 전류의 두께 의존성)

  • 강창수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.411-418
    • /
    • 1998
  • The thickness dependence of stress electric filed oxide currents has been measured in oxides with thicknesses between 10 nm and 80 nm. The oxide currents were shown to be composed of stress current and transient current. The stress current was composed of stress induced leakage current and dc current. The stress current was caused by trap assisted tunneling through the oxide. The transient current was caused by the tunneling charging and discharging of the trap in the interfaces. The stress current was used to estimate to the limitations on oxide thicknesses. The transient current was used to the data retention in memory devices.

  • PDF

The Stress Dependence of Trap Density in Silicon Oxide

  • Kang, C. S.
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.17-24
    • /
    • 2000
  • In this paper, the stress and transient currents associated with the on and off time of applied voltage were used to measure the density and distribution of high voltage stress induced traps in thin silicon oxide films. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform new both cathode and anode interface. The trap densities were dependent on the stress polarity. The stress generated trap distributions were relatively uniform the order of 1011~1021[states/eV/cm2] after a stress voltage. It appear that the stress and transient current that flowed when the stress voltage were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF